高级检索
屈侠, 黄刚. 2024. 碳移除下全球地表气温峰值出现时间的主要影响因子:能量平衡模型研究[J]. 气候与环境研究, 29(3): 339−352. DOI: 10.3878/j.issn.1006-9585.2024.23065
引用本文: 屈侠, 黄刚. 2024. 碳移除下全球地表气温峰值出现时间的主要影响因子:能量平衡模型研究[J]. 气候与环境研究, 29(3): 339−352. DOI: 10.3878/j.issn.1006-9585.2024.23065
QU Xia, HUANG Gang. 2024. Factors Influencing the Timing of Global Temperature Peaks under Carbon Removal: An Energy Balance Model Study [J]. Climatic and Environmental Research (in Chinese), 29 (3): 339−352. DOI: 10.3878/j.issn.1006-9585.2024.23065
Citation: QU Xia, HUANG Gang. 2024. Factors Influencing the Timing of Global Temperature Peaks under Carbon Removal: An Energy Balance Model Study [J]. Climatic and Environmental Research (in Chinese), 29 (3): 339−352. DOI: 10.3878/j.issn.1006-9585.2024.23065

碳移除下全球地表气温峰值出现时间的主要影响因子:能量平衡模型研究

Factors Influencing the Timing of Global Temperature Peaks under Carbon Removal: An Energy Balance Model Study

  • 摘要: 碳移除是21世纪末实现巴黎气候协定温度目标的关键手段。在其开展后,全球地表气温将在随后的若干年达峰。目前,耦合模式比较计划第六阶段(CMIP6)开展碳移除试验的数值模式较少,限制了科学界对碳移除下全球地表气温峰值出现时间的理解。本文发现,基于强迫—响应能量框架的两层能量平衡模型能够很好地重现出:1)大气CO2浓度变化对全球地表气温的影响;2)碳移除过程中全球地表气温的峰值出现时间。因此,该模型可作为CMIP6碳移除试验的补充,能够胜任峰值出现时间的影响因子研究。该能量平衡模型的结果显示,在碳移除过程中,不考虑深层海洋的情况下,对全球平均地表气温的峰值出现时间影响最大的因子为平衡气候敏感度,其次为地表热容量;当深层海洋存在时,影响最大的因子为深层海洋热容量,其次为平衡气候敏感度,之后为地表热容量。这些因子主要通过改变碳移除开始时地表净能量收入的大小来影响全球地表气温峰值的出现时间。相比不考虑深层海洋的情况,深层海洋的存在可以略微提前全球温度峰值出现的时间,并使得碳移除后CO2强迫对地表净能量的下降幅度的贡献较大。

     

    Abstract: Carbon dioxide removal (CDR) is crucial to achieving the temperature targets of the Paris Climate Agreement by the end of this century. After CDR application, global surface temperatures are expected to peak in the subsequent years. However, the limited number of models in the Coupled Model Intercomparison Project phase 6 (CMIP6) that conducted CDR simulations hampers our understanding of when global surface temperature peaks under CDR scenarios. Herein, a two-layer Energy Balance Model (EBM) based on the forced response framework is found to reasonably capture the impact of changes in atmospheric CO2 concentration on global surface temperatures and the timing of their peak following CDR application. This model can complement CMIP6 CDR simulations and serve as a tool to investigate the factors influencing the timing of the temperature peaks. The EBM results suggest that in scenarios excluding the deep ocean, the equilibrium climate sensitivity affects how soon after CDR initiation temperature peaks occur, with the Earth’s surface heat capacity also playing a role. When the deep ocean is present, its heat capacity demonstrates the greatest contribution, followed by equilibrium climate sensitivity and then Earth’s surface heat capacity. These factors primarily affect the timing of global surface temperature peaks by altering the magnitude of the surface energy imbalance when CDR starts. Compared to scenarios excluding deep ocean, incorporating it slightly advances the timing of temperature peaks and reinforces the contribution of CO2 forcing in reducing the magnitude of net energy flux at the Earth’s surface when CDR starts.

     

/

返回文章
返回