高级检索

面向风能开发利用的生成式风速短临预报算法

Generative Short-term Wind Speed Forecasting Algorithm for Wind Energy Development and Utilization

  • 摘要: 近年来,尽管深度学习方法在风速预报中取得了显著进展,但全局平均最优的损失函数设置可能导致预报结果平滑且丢失小尺度信息。因此,本文提出了一种基于深度生成模型的风速预报方法,该方法通过结合历史数据和深度生成模型,可以实现对目标区域的空间分布进行采样和模拟,从而更准确地引导预报结果,提高预报的准确性和可靠性。在河北地区风场短期逐小时预报的研究试验结果表明,结合SDEdit修正的U-Net预报模型相对于单独使用U-Net模型,在预报精度和准确性上具有显著提升,取得了更低的均方根误差和更高的异常相关系数评分,特别是在捕捉小尺度信息表现更为优异。这一发现对于提高风速预报的准确性和可靠性具有重要意义,并为未来类似预报模型的发展与改进提供了有益启示。

     

    Abstract: Despite notable advancements in wind speed forecasting through deep learning techniques in recent years, the adoption of globally averaged optimal loss functions often results in smoothed forecasts that overlook small-scale details. This paper introduces a wind speed forecasting approach based on deep generative models. By integrating historical data with deep generative models, this approach samples and simulates the spatial distribution of the target area, thereby enhancing the precision of forecast outputs. Experimental results from short-term hourly wind field forecasts in the Hebei region demonstrate that augmenting the U-Net forecasting model with SDEdit significantly enhances forecast accuracy and reliability compared with using the U-Net model alone. This combined model achieves lower root mean square error and higher anomaly correlation coefficient scores, particularly excelling in capturing small-scale information. These findings improve the accuracy and reliability of wind speed forecasts and provide valuable insights for the future development and refinement of similar forecasting models.

     

/

返回文章
返回