高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

江淮流域两次中尺度对流涡旋的结构特征研究

张元春 孙建华 徐广阔 齐琳琳

张元春, 孙建华, 徐广阔, 齐琳琳. 江淮流域两次中尺度对流涡旋的结构特征研究[J]. 气候与环境研究, 2013, 18(3): 271-287. doi: 10.3878/j.issn.1006-9585.2012.11162
引用本文: 张元春, 孙建华, 徐广阔, 齐琳琳. 江淮流域两次中尺度对流涡旋的结构特征研究[J]. 气候与环境研究, 2013, 18(3): 271-287. doi: 10.3878/j.issn.1006-9585.2012.11162
ZHANG Yuanchun, SUN Jianhua, XU Guangkuo, QI Linlin. Analysis on the Structure of Two Mesoscale Convective Vortices over Yangtze-Huaihe River Basin[J]. Climatic and Environmental Research, 2013, 18(3): 271-287. doi: 10.3878/j.issn.1006-9585.2012.11162
Citation: ZHANG Yuanchun, SUN Jianhua, XU Guangkuo, QI Linlin. Analysis on the Structure of Two Mesoscale Convective Vortices over Yangtze-Huaihe River Basin[J]. Climatic and Environmental Research, 2013, 18(3): 271-287. doi: 10.3878/j.issn.1006-9585.2012.11162

江淮流域两次中尺度对流涡旋的结构特征研究

doi: 10.3878/j.issn.1006-9585.2012.11162
基金项目: 灾害天气国家重点实验室基金2009LASW-A03;国家重点基础研究发展计划项目2012CB417201;国家自然科学基金项目41205027、41005030

Analysis on the Structure of Two Mesoscale Convective Vortices over Yangtze-Huaihe River Basin

  • 摘要: 对2003、2007年江淮梅雨期的中尺度对流涡旋(MCV)进行了统计分析,结果表明我国梅雨锋上MCV活跃,这些MCV与强降水有关。2003、2007年江淮梅雨期有9个MCV发生,大多数的MCV发生在32°N~35°N之间的江苏境内。采用ARPS(Advanced Regional Prediction System)的资料分析系统(ADAS)和WRF模式模拟了2个MCV的发展过程,并使用数值模拟结果分析了它们的结构特征。MCV一般发生在强对流系统的北侧,其涡旋环流一般在600 hPa以下,对应涡旋区域对流层高层为强辐散,涡度最强的中心在对流层中层,但正涡度区可伸展到300 hPa。初始阶段MCV的中心为上升运动和中性层结,成熟阶段MCV的中心转为下沉运动,同时其南侧有新的对流发生。发展型和不发展型的MCV对比发现,涡旋对流层高层有涡度增加以及二次对流的潜热释放多,可能是发展型MCV维持时间较长的原因。此外,MCV发展过程中南侧急流的增强对MCV中对流的触发和维持有一定作用。
  • [1] Adachi S, Kimura F. 2007. A 36-year climatology of surface cyclogenesis in East Asia using high-resolution reanalysis data[J]. SOLA, 3: 113-116.
    [2] Bartels D L, Maddox R A. 1991. Midlevel cyclonic vortices generated by mesoscale convective systems[J]. Mon. Wea. Rev., 119: 104-118.
    [3] Brandes E A. 1990. Evolution and structure of the 6-7 May 1985 mesoscale convective system and associated vortex[J]. Mon. Wea. Rev., 118: 109-127.
    [4] Brown J M. 1979. Mesoscale unsaturated downdrafts driven by rainfall evaporation: a numerical study[J]. J. Atmos. Sci., 36: 313-338.
    [5] Chen S S, Frank W M. 1993. A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics[J]. J. Atmos. Sci., 50: 2401-2426.
    [6] Clark A J, Gallus W A, Xue M, et al. 2010. Convection-allowing and convection-parameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather environment[J]. Wea. Forecasting, 25: 1052-1081.
    [7] Cram T A, Montgomery M T, Hertenstein R F A. 2002. Early evolution of vertical vorticity in a numerically simulated idealized convective line[J]. J. Atmos. Sci., 59: 2113-2127.
    [8] Davis C A, Trier S B. 2007. Mesoscale convective vortices observed during BAMEX. Part I: Kinematic and thermodynamic structure[J]. Mon. Wea. Rev., 135: 2029-2049.
    [9] 丁一汇. 1993. 1991年江淮流域持续性特大暴雨研究[M]. 北京: 气象出版社, 253pp. Ding Y H. 1993. Study on the Lasting Heavy Rainfalls over the Yangtze-Huaihe River Basin in 1991 (in Chinese)[M]. Beijing: China Meteorological Press, 253pp.
    [10] 高坤, 徐亚梅. 2001. 1999年6月下旬长江中下游梅雨锋低涡扰动的结构研究[J]. 大气科学, 25 (6): 740-756. Gao Kun, Xu Yamei. 2001. A simulation study of structure of mesovortexes along Meiyu front during 22-30 June l999[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25 (6): 740-756.
    [11] James E P, Johnson R H. 2010. A climatology of midlatitude mesoscale convective vortices in the rapid update cycle[J]. Mon. Wea. Rev., 138: 1940-1956.
    [12] 矫梅艳, 姚学祥, 杨克明, 等. 2004. 2003年淮河大水的成因分析[M]. 北京: 气象出版社, 212pp. Jiao Meiyan, Yao Xuexiang, Yang Keming, et al. 2004. Analysis on Cause of Formation of Huaihe River Basin Flood in 2003 (in Chinese)[M]. Beijing: China Meteorological Press, 212pp.
    [13] Jorgenson D P, LeMone M A, Trier S B. 1997. Structure and evolution of the 22 February 1993 TOGA COARE squall line: Observation of precipitation, circulation, and surface energy fluxes[J]. J. Atmos. Sci., 54: 1961-1985.
    [14] Kirk J R. 2003. Comparing the dynamical development of two mesoscale convective vortices[J]. Mon. Wea. Rev., 131: 862-890.
    [15] Kirk J R. 2007. A phase-plot method for diagnosing vorticity concentration mechanisms in mesoscale convective vortices[J]. Mon. Wea. Rev., 135: 801-820.
    [16] Knievel J C, Johnson R H. 2003. A scale-discriminating vorticity budget for a mesoscale vortex in a midlatitude, continental mesoscale convective system[J]. J. Atmos. Sci., 60: 781-794.
    [17] Maddox R A. 1983. Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes[J]. Mon. Wea. Rev., 111: 1475-1493.
    [18] Olsson P Q, Cotton W R. 1997. Balanced and unbalanced circulations in a primitive equation simulation of a midlatitude MCC. Part I: Numerical simulation[J]. J. Atmos. Sci., 54: 457-478.
    [19] Skamarock W C, Weisman M L, Klemp J B. 1994. Three-dimensional evolution of simulated long-lived squall lines[J]. J. Atmos. Sci., 51: 2563-2584.
    [20] 石定朴, 朱文琴, 王洪庆, 等. 1996. 中尺度对流系统红外云图云顶黑体温度的分析[J]. 气象学报, 54 (5): 600-611. Shi Dingbu, Zhu Wenqin, Wang Hongqing, et al. 1996. Cloud top blackbody temperature analysis of infrared satellite image for mesoscale convective system[J]. Acta Meteorologica Sinica (in Chinese), 54 (5): 600-611.
    [21] 孙建华, 张小玲, 齐琳琳, 等. 2004. 2002年中国暴雨试验期间一次低涡切变上发生发展的中尺度对流系统研究[J]. 大气科学, 28 (5): 675-691. Sun Jianhua, Zhang Xiaoling, Qi Linlin, et al. A study on vortex and its mesoscale convective system during China heavy rainfall experiment and Study in 2002[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 2004, 28 (5): 675-691.
    [22] 孙建华, 周海光, 赵思雄. 2006. 2003年7月4~5日淮河流域大暴雨中尺度对流系统的观测分析[J]. 大气科学, 30 (6): 1103-1118. Sun Jianhua, Zhou Haiguang, Zhao Sixiong. 2006. An observational study of mesoscale convective systems producing severe heavy rainfall in the Huaihe River basin during 3-5 July 2003[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30 (6): 1103-1118.
    [23] Trier S B, Davis C A, Tuttle J D. 2000. Long-lived mesoconvective vortices and their environment. Part I: Observations from the central United States during the 1998 warm season[J]. Mon. Wea. Rev., 128: 3376-3395.
    [24] Verlinde J, Cotton W R. 1990. A mesovortex couplet in the trailing anvil region of a multi-cellular convective complex[J]. Mon. Wea. Rev., 118: 993-1010.
    [25] Weisman M L, Davis C A. 1998. Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems[J]. J. Atmos. Sci., 55: 2603-2622.
    [26] 徐广阔, 孙建华, 雷霆, 等. 2009a. 多普勒天气雷达资料同化对暴雨模拟的影响[J]. 应用气象学报, 20 (1): 36-46. Xu Guangkuo, Sun Jianhua, Lei Ting, et al. 2009a. Impacts of Chinese Doppler radar on the severe heavy rainfall forecast during Meiyu season[J]. Journal of Applied Meteorological Science (in Chinese), 20 (1): 36-46.
    [27] 徐广阔, 孙建华, 赵思雄. 2009b. 基于雷达资料同化的2003年7月一次暴雨过程的数值模拟分析[J]. 热带气象学报, 25 (4): 427-434. Xu Guangkuo, Sun Jianhua, Zhao Sixiong. 2009b. The numerical simulation and analysis of a heavy rainfall in July 2003 based on radar data assimilation[J]. Journal of Tropical Meteorology (in Chinese), 25 (4): 427-434.
    [28] Yu C K, Jou B J D, Smull B F. 1999. Formative stage of a long-lived mesoscale vortex observed by airbone Doppler radar[J]. Mon. Wea. Rev., 127: 838-857.
    [29] Zhang D L. 1992. The formation of a cooling-induced mesovortex in the trailing stratiform region of a midlatitude squall line[J]. Mon. Wea. Rev., 120: 2763-2785.
    [30] Zhang D L, Fritsch J M. 1987. Numerical simulation of the meso-beta-scale structure and evolution of the 1977 Johnstown flood. Part II: Inertially stable warm-core vortex and the mesoscale convective complex[J]. J. Atmos. Sci., 44: 2593-2612.
    [31] Zhang D L, Fritsch J M. 1988. A numerical investigation of a convectively generated, inertially stable, extratropical, warm-core mesovortex overland. Part I: Structure and evolution[J]. Mon. Wea. Rev., 116: 2660-2687.
    [32] Zhang J. 1999. Moisture and diabatic initialization based on radar and satellite observation[D]. Ph. D. dissertation, University of Oklahoma, Available from School of Meteorology, University of Oklahoma, Norman OK 73019, 194pp.
    [33] 张庆云, 王会军, 林朝晖, 等. 2004. 中国天气气候异常成因研究——2003年[M]. 北京: 气象出版社, 170pp. Zhang Qingyun, Wang Huijun, Lin Zhaohui, et al. 2004. The Mechanism of Abnormal Weather and Climate in China—2003 (in Chinese)[M]. Beijing: China Meteorological Press, 170pp.
    [34] 张小玲, 陶诗言, 张顺利. 2004. 梅雨锋上的三类暴雨[J]. 大气科学, 28 (2): 187-205. Zhang Xiaoling, Tao Siyan, Zhang Shunli. 2004. Three types of heavy rainstorms associated with Meiyu front[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28 (2): 187-205.
    [35] 赵思雄, 张立生, 孙建华. 2007. 2007年淮河流域致洪暴雨及其中尺度系统特征分析[J]. 气候与环境研究, 12: 713-727. Zhao Sixiong, Zhang Lisheng, Sun Jianhua. 2007. Study of heavy rainfall and related mesoscale systems causing severe flood in Huaihe River basin during the summer of 2007[J]. Climatic and Environmental Research (in Chinese), 12: 713-727.
    [36] 朱爱军, 潘益农. 2007. 中国东部地区一个中尺度对流涡旋的涡度收支分析[J]. 南京大学学报 (自然科学版), 43: 260-269. Zhu Aijun, Pan Yinong. 2007. A vorticity budget for a mesoscale convective vortex over east China[J]. Journal of Nanjing University (Natural Sciences) (in Chinese), 43: 260-269.
  • 加载中
计量
  • 文章访问数:  2569
  • HTML全文浏览量:  9
  • PDF下载量:  2835
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-24
  • 修回日期:  2012-04-10

目录

    /

    返回文章
    返回