高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

草原生态系统模式中参数不确定性导致的模拟结果不确定性研究

谢东东 孙国栋 邵爱梅 穆穆

谢东东, 孙国栋, 邵爱梅, 穆穆. 草原生态系统模式中参数不确定性导致的模拟结果不确定性研究[J]. 气候与环境研究, 2013, 18(3): 375-386. doi: 10.3878/j.issn.1006-9585.2012.11179
引用本文: 谢东东, 孙国栋, 邵爱梅, 穆穆. 草原生态系统模式中参数不确定性导致的模拟结果不确定性研究[J]. 气候与环境研究, 2013, 18(3): 375-386. doi: 10.3878/j.issn.1006-9585.2012.11179
XIE Dongdong, SUN Guodong, SHAO Aimei, MU Mu. A Study of Simulation Uncertainties Caused by Parameter Uncertainties in a Grassland Ecosystem Model[J]. Climatic and Environmental Research, 2013, 18(3): 375-386. doi: 10.3878/j.issn.1006-9585.2012.11179
Citation: XIE Dongdong, SUN Guodong, SHAO Aimei, MU Mu. A Study of Simulation Uncertainties Caused by Parameter Uncertainties in a Grassland Ecosystem Model[J]. Climatic and Environmental Research, 2013, 18(3): 375-386. doi: 10.3878/j.issn.1006-9585.2012.11179

草原生态系统模式中参数不确定性导致的模拟结果不确定性研究

doi: 10.3878/j.issn.1006-9585.2012.11179
基金项目: 国家自然科学基金项目40905050、40875063

A Study of Simulation Uncertainties Caused by Parameter Uncertainties in a Grassland Ecosystem Model

  • 摘要: 基于五变量草原生态系统理论模式,应用与参数有关的条件非线性最优扰动(CNOP-P)方法,探讨了由参数不确定性导致的草原生态系统模式模拟结果的不确定性问题。参数的不确定性可能来源于观测和(或)对物理过程描述等的不确定性。选取了五变量草原生态系统模式中具有物理意义的32个模式参数进行数值试验。试验结果表明,对所考察的32个模式参数,在一定的不确定性和给定的优化时刻范围内,单独优化每个参数所得CNOP-Ps的联合模态与同时优化32个参数所得CNOP-P的模态并不相同。比较了上述两类参数误差以及随机参数误差对草原生态系统模拟的差异。随机参数误差与上述优化方法所得参数误差的不确定性范围大小相同。数值结果表明,同时优化32个参数所得CNOP-P类型参数误差使得草原生态系统模拟的不确定性程度最大。这种影响表现在使得草原生态系统转变为沙漠生态系统,或者使得草原生态系统转变为具有更多生草量的草原生态系统。上述数值结果不依赖于优化时间和参数不确定性程度的大小。这些数值结果建议我们应当考虑多参数的非线性相互作用来研究草原生态系统模式模拟的不确定性问题,并且揭示出CNOP-P方法是讨论上述问题的一个有用的工具。
  • [1] Bastidas L A. 1998. Parameter estimation for hydrometeorological models using multi-criteria methods[D]. Ph. D. dissertation, Dep. of Hydrology and Water Res., Univ. of Arizona, Tucson, 204pp.
    [2] Byrd R H, Lu P, Nocedal J, et al. 1995. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 16 (5): 1190-1208.
    [3] Chen W, Zhu D Q, Liu H Z, et al. 2009. Land-air interaction over arid/semi-arid areas in China and its impact on the East Asian summer monsoon. Part I: Calibration of the land surface model (BATS) using multicriteria methods[J]. Advances in Atmospheric Sciences, 26 (6): 1088-1098.
    [4] Collins D C, Avissar R. 1994. An evaluation with the Fourier Amplitude Sensitivity Test (FAST) of which land surface parameters are of greatest importance in atmospheric modeling[J]. J. Climate, 7 (5): 681-703.
    [5] Duan W S, Zhang R. 2010. Is model parameter error related to a significant spring predictability barrier for El Niño events? Results from a theoretical model[J]. Advances in Atmospheric Sciences, 27 (5): 1003-1013.
    [6] Errico R M. 1997. What is an adjoint model?[J]. Bull. Amer. Meteor. Soc., 78 (11): 2577-2591.
    [7] Fang J Y, Yang Y H, Ma W H, et al. 2010. Ecosystem carbon stocks and their changes in China's grasslands[J]. Science China Life Sciences, 53: 757-765, doi: 10.1007/s11427-010-4029-x.
    [8] Gupta H V, Sorooshian S, Yapo P O. 1998. Toward improved calibration of hydrologic models: Multiple and non-commensurable measures of information[J]. Water Resour. Res., 34: 751-761.
    [9] Jackson C, Xia Y L, Sen M K, et al. 2003. Optimal parameter estimation and uncertainty analysis of a land surface model: A case study from Cabauw, Netherlands[J]. J. Geophys. Res., 108 (D18), 4583, doi:10. 1029/2002JD002991.
    [10] Klausmeier C A. 1999. Regular and irregular patterns in semiarid vegetation[J]. Science, 284: 1826-1828.
    [11] 李红祺, 郭维栋, 孙国栋, 等. 2011. 条件非线性最优扰动方法在陆面过程模式参数优化中的扩展应用初探[J]. 物理学报, 60 (1): 784-790. Li Hongqi, Guo Weidong, Sun Guodong, et al. 2011. Using conditional nonlinear optimal perturbation method in parameter optimization of land surface processes model[J]. Acta Physica Sinica (in Chinese), 60 (1): 784-790.
    [12] 骆海英. 2008. 一类模式误差对ENSO可预报性影响的研究[D]. 中国科学院大气物理研究所博士学位论文, 118pp. Luo Haiying. 2008. Impact of a kind of model error on the predictability of ENSO[D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences, 118pp.
    [13] 吕达仁, 陈佐忠, 王庚辰, 等. 1997. 内蒙古半干旱草原土壤-植被-大气相互作用—科学问题与实验计划概述[J]. 气候与环境研究, 2 (3): 199-209. Lü Daren, Chen Zuozhong, Wang Gengchen, et al. 1997. Inner Mongolia semi-arid grassland soil-vegetation-atmosphere interaction[J]. Climatic and Environmental Research (in Chinese), 2 (3): 199-209.
    [14] Margulis S A, Entekhabi D. 2001. A coupled land surface-boundary layer model and its adjoint[J]. Journal of Hydrometeorology, 2: 274-295.
    [15] Mu M, Wang B. 2007. Nonlinear instability and sensitivity of a theoretical grassland ecosystem to finite-amplitude perturbations[J]. Nonlinear Processes in Geophysics, 14: 409-423.
    [16] Mu M, Duan W S, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications[J]. Nonlinear Processes in Geophysics, 10: 493-501.
    [17] Mu M, Duan W S, Wang Q, et al. 2010. An extension of conditional nonlinear optimal perturbation approach and its applications[J]. Nonlinear Processes in Geophysics, 17: 211-220.
    [18] Pathak T B, Fraisse C W, Jones J W, et al. 2007. Use of global sensitivity analysis for CROPGRO cotton model development[J]. American Society of Agricultural and Biological Engineers, 50 (6): 2295-2302.
    [19] Pitman A J. 1994. Assessing the sensitivity of a land-surface scheme to the parameter values using a single column model[J]. J. Climate, 7: 1856-1869.
    [20] Saltelli A, Tarantola S, Chan K. 1999. A quantitative, model independent method for global sensitivity analysis of model output[J]. Technometrics, 41: 39-56.
    [21] Sorooshian S, Gupta V K. 1985. The analysis of structural identifiability: Theory and application to conceptual rainfall-runoff models[J]. Water Resour. Res., 21 (4): 487-495.
    [22] 宋耀明. 2008. 陆面过程模式在中国的数值模拟研究[D]. 南京大学大气科学学院博士学位论文, 175pp. Song Yaoming. 2008. Numerical simulation study of land surface model in China[D]. Ph. D. dissertation (in Chinese), Nanjing University of Information Science and Technology, 175pp.
    [23] Sun G D, Mu M. 2009. Nonlinear feature of the abrupt transitions between multiple equilibria states of an ecosystem model[J]. Advances in Atmospheric Sciences, 26 (2): 293-304.
    [24] Wang B, Wang J P, Huo Z H, et al. 2010. Application of the conditional nonlinear optimal perturbations method in a theoretical grassland ecosystem[J]. Chinese Quarterly Journal of Mathematics, 25 (3): 422-429.
    [25] Wang Q, Mu M, Dijkstra H A. 2011. Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander[J]. Advances in Atmospheric Sciences, 29 (1): 118-134, doi: 10.1007/s00376-011-0199-0.
    [26] 王强. 2011. 黑潮路径变异的可预报性研究[D]. 中国科学院大气物理研究所博士学位论文, 104pp. Wang Qiang. 2011. The predictability studies of the Kuroshio path variations[D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences, 104pp.
    [27] Wilson M F, Henderson-Sellers A, Dickinson R E, et al. 1987a. Sensitivity of the biosphere-atmosphere transfer scheme (BATS) to the inclusion of variable soil characteristics[J]. J. Climate Appl. Meteor., 26: 341-362.
    [28] Wilson M F, Henderson-Sellers A, Dickinson R E, et al. 1987b. Investigation of the sensitivity of the land-surface parameterization of the NCAR Community Climate Model in regions of tundra vegetation[J]. J. Climatol., 7: 319-343.
    [29] Xia Y, Yang Z L, Jackson C, et al. 2004. Impacts of data length on optimal parameter and uncertainty estimation of a land surface model[J]. J. Geophys. Res., 109, D07101, doi: 10.1029/2003JD004419.
    [30] Yapo P O, Gupta H V, Sorooshian S. 1997. Multi-objective global optimization for hydrologic models[J]. J. Hydrol., 204 (1-4): 83-97.
    [31] 余堰山. 2009. ENSO事件春季可预报性障碍问题研究[D]. 中国科学院大气物理研究所博士学位论文, 115pp. Yu Yanshan. 2009. Studies of ENSO "Spring Predictability Barrier" problem[D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences, 115pp.
    [32] Zeng Q C, Zeng X D, Wang A H, et al. 2003. Models and numeraical simulation of atmosphere-vegetation-soil interactions and ecosystem dynamics[C]//Proceedings of ICCP6-CCP2003. Beijing: Rinton Press Inc., 18pp.
    [33] 曾庆存, 曾晓东, 王爱慧, 等. 2005. 大气和植被生态及土壤系统水文过程相互作用的一些研究[J]. 大气科学, 29 (1): 7-19. Zeng Qingcun, Zeng Xiaodong, Wang Aihui, et al. 2005. Some studies of the hydrological interactions in the atmosphere-ecosystem-soil system[J]. Chinese Journal of Atmospheric Sciences, 29 (1): 7-19.
    [34] 曾晓东, 王爱慧, 赵钢, 等. 2004. 草原生态动力学模式及其实际检 验[J]. 中国科学 (C辑), 34 (5): 481-486. Zeng Xiaodong, Wang Aihui, Zhao Gang, et al. 2005. Ecological dynamic model of grassland and its practical verification[J]. Science in China (Ser. C), 48 (1): 41-48.
    [35] Zeng X D, Shen S S P, Zeng X B, et al. 2004. Multiple equilibrium states and the abrupt transitions in a dynamical system of soil water interacting with vegetation[J]. Geophys. Res. Lett., 31: 5501, doi:1011029P 2003GL01891.
    [36] Zeng X D, Zeng X B, Shen S S P, et al. 2005. Vegetation-soil water interaction within a dynamical ecosystem model of grassland in the semi-arid areas[J]. Tellus, 57B: 189-202.
    [37] Zeng X D, Wang A H, Zeng Q C, et al. 2006. Intermediately complex models for the hydrological interactions in the atmosphere-vegetation-soil system[J]. Advances in Atmospheric Sciences, 23 (1): 127-140.
    [38] Zhu C, Byrd R H, Nocedal J. 1997. Algorithm 778: L-BFGS-B, FORTRAN subroutines for large scale bound constrained optimization[J]. ACM Transactions on Mathematical Software, 23 (4): 550-560.
  • 加载中
计量
  • 文章访问数:  3211
  • HTML全文浏览量:  22
  • PDF下载量:  3177
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-21
  • 修回日期:  2013-02-23

目录

    /

    返回文章
    返回