高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北半球冬季阿留申低压-冰岛低压相关关系的年代际变化及其模拟

董啸 薛峰 曾庆存

董啸, 薛峰, 曾庆存. 北半球冬季阿留申低压-冰岛低压相关关系的年代际变化及其模拟[J]. 气候与环境研究, 2014, 19(5): 523-535. doi: 10.3878/j.issn.1006-9585.2013.13021
引用本文: 董啸, 薛峰, 曾庆存. 北半球冬季阿留申低压-冰岛低压相关关系的年代际变化及其模拟[J]. 气候与环境研究, 2014, 19(5): 523-535. doi: 10.3878/j.issn.1006-9585.2013.13021
DONG Xiao, XUE Feng, ZENG Qingcun. Observational Analysis and Numerical Simulation of the Decadal Variation in the Relationship between the Aleutian Low and the Icelandic Low during Boreal Winter[J]. Climatic and Environmental Research, 2014, 19(5): 523-535. doi: 10.3878/j.issn.1006-9585.2013.13021
Citation: DONG Xiao, XUE Feng, ZENG Qingcun. Observational Analysis and Numerical Simulation of the Decadal Variation in the Relationship between the Aleutian Low and the Icelandic Low during Boreal Winter[J]. Climatic and Environmental Research, 2014, 19(5): 523-535. doi: 10.3878/j.issn.1006-9585.2013.13021

北半球冬季阿留申低压-冰岛低压相关关系的年代际变化及其模拟

doi: 10.3878/j.issn.1006-9585.2013.13021
基金项目: 中国科学院战略性先导科技专项XDA05110201,国家重点基础研究发展计划项目2010CB951901

Observational Analysis and Numerical Simulation of the Decadal Variation in the Relationship between the Aleutian Low and the Icelandic Low during Boreal Winter

  • 摘要: 使用多种长期观测和再分析资料,分析了北半球冬季阿留申低压和冰岛低压相关关系的年代际变化。结果表明,两低压存在显著的负相关关系,使北太平洋和北大西洋海平面气压形成跷跷板式的变化(Aleutian Low-Icelandic Low Seesaw, AIS)。此外,AIS还存在显著的年代际变化,在1935~1949年和1980年后较为显著,其余时期并不显著。对1980年代的年代际转变分析表明,太平洋年代际振荡(Pacific Decadal Oscillation,PDO)在1970年代末的位相转变是AIS这次年代际转变的主要原因。PDO由负位相转变为正位相,使全球大部分大洋海表温度升高,而北太平洋海表温度降低,两低压显著变深,低压南部西风增强,从而通过Rossby波的频散效应使两低压强度形成显著负相关。1930年代中期的年代际转变与此类似,但强度较弱。同时,年代际背景的变化也影响到两低压的年际变化。在给定海表温度和海冰分布的驱动下,大气环流模式IAP AGCM4能基本模拟出AIS年代际转变的过程和机理,但仍存在一些偏差。
  • [1] Allan R, Ansell T. 2006. A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850-2004 [J]. J. Climate, 19 (22): 5816-5842.
    [2] 陈红, 薛峰. 2013. 东亚夏季风和中国东部夏季降水年代际变化的模拟 [J]. 大气科学, 37 (5): 1143-1153, doi:10.3878/j.issn.1006-9895.2012. 12130. Chen Hong, Xue Feng. 2013. Numerical simulation of decadal variations in the East Asian summer monsoon and summer rainfall in eastern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(5): 1143-1153, doi:10.3878/j.issn.1006-9895.2012.12130.
    [3] Dong X, Xue F, Zhang H, et al. 2012. Evaluation of surface air temperature change over China and the globe during the twentieth century in IAP AGCM4.0 [J]. Atmospheric and Oceanic Science Letters, 5 (5): 435-438.
    [4] Honda M, Nakamura H. 2001. Interannual seesaw between the Aleutian and Icelandic lows. Part II: Its significance in the interannual variability over the wintertime Northern Hemisphere [J]. J. Climate, 14 (24): 4512-4529.
    [5] Honda M, Nakamura H, Ukita J, et al. 2001. Interannual seesaw between the Aleutian and Icelandic lows. Part I: Seasonal dependence and life cycle [J]. J. Climate, 14 (6): 1029-1042.
    [6] Honda M, Yamane S, Nakamura H. 2005. Impacts of the Aleutian-Icelandic seesaw on surface climate during the twentieth century [J]. J. Climate, 18 (14): 2793-2802.
    [7] Hurrell J W. 1995. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation [J]. Science, 269 (5224): 676-679.
    [8] Linkin M E, Nigam S. 2008. The North Pacific oscillation-west Pacific teleconnection pattern: Mature-phase structure and winter impacts [J]. J. Climate, 21(9): 1979-1997.
    [9] Nakamura H, Honda M. 2002. Interannual seesaw between the Aleutian and Icelandic lows. Part III: Its influence upon the stratospheric variability [J]. J. Meteor. Soc. Japan, 80: 1051-1067.
    [10] Plumb R A. 1985. On the three-dimensional propagation of stationary waves [J]. J. Atmos. Sci., 42 (3): 217-229.
    [11] Smith T M, Reynolds R W, Peterson T C, et al. 2008. Improvements to NOAA's historical merged land-ocean surface temperature analysis (1880-2006) [J]. J. Climate, 21 (10): 2283-2296.
    [12] 孙泓川, 周广庆, 曾庆存. 2012. IAP第四代大气环流模式的气候系统模式模拟性能评估 [J]. 大气科学, 36: 215-233. Sun Hongchuan, Zhou Guangqing, Zeng Qingcun. 2012. Assessments of the climate system model (CAS-ESM-C) using IAP AGCM4 as its atmospheric component [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36: 215-233.
    [13] Thompson D W J, Wallace J M. 2000. Annular modes in the extratropical circulation, Part I: Month-to-month variability [J]. J. Climate, 13 (5): 1000-1016.
    [14] Trenberth K E, Hurrell J W. 1994. Decadal atmosphere-ocean variations in the Pacific [J]. Climate Dyn., 9 (6): 303-319.
    [15] 涂长望. 1937. 中国天气与世界大气的浪动及其长期预告中国夏季旱涝的应用 [J]. 气象杂志, 13 (11): 647-697. Tu Changwang. 1937. Linkages between weather in China and the global atmospheric oscillations and applications in long-range forecast of summer drought and flood in China [J]. Journal of Meteorology (in Chinese), 13 (11): 647-697.
    [16] Uppala S M, Kållberg P W, Simmons A J, et al. 2005. The ERA-40 re-analysis [J]. Quart. J. Roy. Meteor. Soc., 131 (612): 2961-3012.
    [17] Walker G T, Bliss E. 1932. World weather. V [J]. Memoirs of the Royal Meteorological Society, 4: 53-84.
    [18] Wallace J M, Gutzler D S. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter [J]. Mon. Wea. Rev., 109 (4): 784-812.
    [19] 王会军, 贺圣平. 2012. ENSO和东亚冬季风之关系在20世纪70年代中期之后的减弱 [J]. 科学通报, 57 (19): 1713-1718. Wang Huijun, He Shengping. 2012. Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s [J]. Chinese Science Bulletin, 57: 3535-3540.
    [20] 王林, 陈文, 冯瑞权, 等. 2011. 北太平洋涛动的季节演变及其与我国冬春气候异常的联系 [J]. 大气科学, 35 (3): 393-402. Wang Lin, Chen Wen, Fong Soikun, et al. 2011. The seasonal march of the North Pacific oscillation and its association with the interannual variations of China's climate in boreal winter and spring [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35 (3): 393-402.
    [21] 武炳义, 黄荣辉. 1999. 冬季北大西洋涛动极端异常变化与东亚冬季风 [J]. 大气科学, 23 (6): 641-651. Wu Bingyi, Huang Ronghui. 1999. Effects of the extremes in the North Atlantic oscillation on East Asian winter monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 23 (6): 641-651.
    [22] Xue Feng, Zeng Qingcun. 1997. Teleconnection patterns in the Northern Hemisphere simulated by IAP GCM [J]. Advances in Atmospheric Sciences, 14 (1): 41-48.
    [23] 杨修群, 朱益民, 谢倩, 等. 2004. 太平洋年代际振荡的研究进展 [J]. 大气科学, 28 (6): 979-992. Yang Xiuqun, Zhu Yimin, Xie Qian, et al. 2004. Advances in studies of Pacific decadal oscillation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28 (6): 979-992.
    [24] 张贺, 林朝晖, 曾庆存. 2009. IAP AGCM-4动力框架的积分方案及模式检验 [J]. 大气科学, 33 (6): 1267-1285. Zhang He, Lin Zhaohui, Zeng Qingcun. 2009. The computational scheme and the test for dynamical framework of IAP AGCM-4 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (6): 1267-1285.
    [25] 张贺, 林朝晖, 曾庆存. 2011. 大气环流模式中动力框架与物理过程的相互响应 [J]. 气候与环境研究, 16(1): 15-30. Zhang He, Lin Zhaohui, Zeng Qingcun. 2011. The mutual response between dynamical core and physical parameterizations in atmospheric general circulation models [J]. Climatic and Environmental Research (in Chinese), 16 (1): 15-30.
  • 加载中
计量
  • 文章访问数:  2568
  • HTML全文浏览量:  28
  • PDF下载量:  2059
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-23
  • 修回日期:  2013-10-10

目录

    /

    返回文章
    返回