高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WRF/Chem模式中两种起沙参数化方案对东亚地区一次强沙尘暴过程模拟的影响

吴成来 林朝晖

吴成来, 林朝晖. WRF/Chem模式中两种起沙参数化方案对东亚地区一次强沙尘暴过程模拟的影响[J]. 气候与环境研究, 2014, 19(4): 419-436. doi: 10.3878/j.issn.1006-9585.2013.13041
引用本文: 吴成来, 林朝晖. WRF/Chem模式中两种起沙参数化方案对东亚地区一次强沙尘暴过程模拟的影响[J]. 气候与环境研究, 2014, 19(4): 419-436. doi: 10.3878/j.issn.1006-9585.2013.13041
WU Chenglai, LIN Zhaohui. Impact of Two Different Dust Emission Schemes on the Simulation of a Severe Dust Storm in East Asia Using the WRF/Chem Model[J]. Climatic and Environmental Research, 2014, 19(4): 419-436. doi: 10.3878/j.issn.1006-9585.2013.13041
Citation: WU Chenglai, LIN Zhaohui. Impact of Two Different Dust Emission Schemes on the Simulation of a Severe Dust Storm in East Asia Using the WRF/Chem Model[J]. Climatic and Environmental Research, 2014, 19(4): 419-436. doi: 10.3878/j.issn.1006-9585.2013.13041

WRF/Chem模式中两种起沙参数化方案对东亚地区一次强沙尘暴过程模拟的影响

doi: 10.3878/j.issn.1006-9585.2013.13041
基金项目: 中国科学院战略性先导科技专项XDA05110200,国家重点基础研究发展计划项目2009CB421406,科技部国际科技合作与交流专项2011DFG23450

Impact of Two Different Dust Emission Schemes on the Simulation of a Severe Dust Storm in East Asia Using the WRF/Chem Model

  • 摘要: 利用耦合了GOCART和Shao04两种起沙参数化方案的WRF/Chem模式对2002年3月19~22日发生在东亚地区的强沙尘暴过程进行模拟,着重考察了不同起沙方案对沙尘暴过程模拟的影响。结果表明,耦合了两种不同方案的WRF/Chem总体上均能较合理地模拟出主要的起沙区域、起沙强度的变化以及沙尘浓度的时空演变特征,模式对沙尘源地附近及下游地区地面沙尘浓度时间变化特征的模拟与站点观测结果也十分接近。但总体说来Shao04方案对沙尘起沙的发生以及强度变化过程具有更好的模拟能力,该方案模拟的沙尘浓度与观测更为一致,整体性能要优于GOCART方案。进一步分析发现,由于GOCART方案中采用的临界起沙风速偏小,导致该方案下模拟的沙尘分布范围偏大;另外该方案忽略了蒙古东南部和内蒙古中东部的潜在沙尘源地,从而使得耦合了GOCART方案的模式未能模拟出上述区域的起沙过程,使得该区域及下游地区模拟的沙尘浓度也偏小。但在塔里木盆地,Shao04方案计算的起沙通量偏小,这可能与Shao04方案未能考虑风速较小情况下空气拖曳力夹卷作用对起沙的影响有关,也可能与该方案中采用的土壤质地数据不准确有关。
  • [1] Bell M L, Levy J K, Lin Z. 2008. The effect of sandstorms and air pollution on cause-specific hospital admissions in Taipei, Taiwan [J]. Occupational and Environmental Medicine, 65 (2): 104-111.
    [2] Chen F, Mitchell K, Schaake J, et al. 1996. Modeling of land surface evaporation by four schemes and comparison with FIFE observations [J]. J. Geophys. Res., 101 (D3): 7251-7268.
    [3] Chou M D, Suarez M J. 1994. An efficient thermal infrared radiation parameterization for use in general circulation models [R]. NASA Tech Memo. 85.
    [4] Ginoux P, Prospero J M, Torres O, et al. 2004. Long-term simulation of global dust distribution with the GOCART model: Correlation with North Atlantic Oscillation [J]. Environmental Modelling & Software, 19 (2): 113-128.
    [5] Gong S L, Zhang X Y, Zhao T L, et al. 2003. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation [J]. J. Geophys. Res., 108 (D9): 4262, doi: 10.1029/2002JD002633.
    [6] Grell G A, Peckham S E, Schmitz R, et al. 2005. Fully coupled “online” chemistry within the WRF model [J]. Atmos. Environ., 39: 6957-6975.
    [7] Hong S Y, Dudhia J, Chen S H. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation [J]. Mon. Wea. Rev., 132: 103-120.
    [8] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134: 2318-2341.
    [9] Huneeus N, Schulz M, Balkanski Y, et al. 2011. Global dust model intercomparison in AeroCom phase I [J]. Atmospheric Chemistry and Physics, 11: 7781-7816.
    [10] Ishizuka M, Mikami M, Yamada Y, et al. 2009. Threshold friction velocities of saltation sand particles for different soil moisture conditions in the Taklimakan Desert [J]. SOLA, 5: 184-187.
    [11] Kang J Y, Yoon S C, Shao Y P, et al. 2011. Comparison of vertical dust flux by implementing three dust emission schemes in WRF/Chem [J]. J. Geophys. Res., 116(D9): D09202, doi: 10.1029/2010jd014649.
    [12] Kimura R, Shinoda M. 2010. Spatial distribution of threshold wind speeds for dust outbreaks in northeast Asia [J]. Geomorphology, 114: 319-325.
    [13] Klose M, Shao Y. 2012. Stochastic parameterization of dust emission and application to convective atmospheric conditions [J]. Atmospheric Chemistry and Physics, 12: 7309-7320.
    [14] Kurosaki Y, Mikami M. 2007. Threshold wind speed for dust emission in East Asia and its seasonal variations [J]. J. Geophys. Res., 112 (D17): D17202, doi: 10.1029/2006jd007988.
    [15] 雷航, 林朝晖, 孙建华. 2005. 一个改进的沙尘天气数值预测系统及其模拟试验 [J]. 气候与环境研究, 10 (3): 669-683. Lei Hang, Lin Zhaohui, Sun Jianhua. 2005. An improved dust storm prediction system and its simulation experiments [J]. Climatic and Environmental Research (in Chinese), 10 (3): 669-683.
    [16] Li X L, Zhang H S. 2011. Research on threshold friction velocities during dust events over the Gobi Desert in northwest China [J]. J. Geophys. Res., 116 (D20): D20210, doi: 10.1029/2010jd015572.
    [17] 李晓岚, 张宏升. 2012. 内蒙古科尔沁沙地起沙近地层动力学阈值的试验研究 [J]. 高原气象, 31 (1): 38-46. Li Xiaolang, Zhang Hongsheng. 2012. Study on the threshold friction velocity of dust emission in Horqin Sand Land Area in the Inner Mongolia [J]. Plateau Meteorology (in Chinese), 31 (1): 38-46.
    [18] Lin Z H, Levy J K, Lei H, et al. 2012. Advances in disaster modeling, simulation and visualization for sandstorm risk management in North China [J]. Remote Sensing, 4: 1337-1354.
    [19] Marticorena B, Bergametti G. 1995. Modeling the atmospheric dust cycle. 1. Design of a soil-derived dust emission scheme [J]. J. Geophys. Res., 100 (D8): 16415-16430.
    [20] Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave [J]. J. Geophys. Res., 102 (D14): 16663-16682.
    [21] Park S U, Park M S, Chun Y. 2010. Asian dust events observed by a 20-m monitoring tower in Mongolia during 2009 [J]. Atmos. Environ., 44: 4964-4972.
    [22] Shao Y P. 2004. Simplification of a dust emission scheme and comparison with data [J]. J. Geophys. Res., 109(D10): D10202, doi:10.1029/ 2003jd004372.
    [23] Shao Y P. 2008. Physics and Modelling of Wind Erosion [M]. Dordrecht: Springer, 467pp.
    [24] Shao Y P, Dong C H. 2006. A review on East Asian dust storm climate, modelling and monitoring [J]. Global and Planetary Change, 52: 1-22.
    [25] Shao Y P, Lu H. 2000. A simple expression for wind erosion threshold friction velocity [J]. J. Geophys. Res., 105 (D17): 22437-22443.
    [26] Skamarock W C, Klemp J B, Dudhia J, et al. 2008. A description of the advanced research WRF version 3 [R]. NCAR Technical Note. NCAR/TN-475+STR, 113.
    [27] Shao Y P, Yang Y, Wang J J, et al. 2003. Northeast Asian dust storms: Real- time numerical prediction and validation [J]. J. Geophys. Res., 108 (D22): 4691, doi: 10.1029/2003jd003667.
    [28] Shao Y P, Wyrwoll K H, Chappell A, et al. 2011. Dust cycle: An emerging core theme in Earth system science [J]. Aeolian Research, 2 (4): 181-204.
    [29] 孙建华, 赵琳娜, 赵思雄. 2003. 一个适用于我国北方的沙尘暴天气数值预测系统及其应用试验 [J]. 气候与环境研究, 8 (2): 125-l42. Sun Jianhua, Zhao Linna, Zhao Sixiong. 2003. An integrated numerical modeling system of dust storm suitable to North China and its applications [J]. Climatic and Environmental Research (in Chinese), 8 (2): l25-l42.
    [30] Uno I, Wang Z, Chiba M, et al. 2006. Dust model intercomparison (DMIP) study over Asia: Overview [J]. J. Geophys. Res., 111 (D12): D12213, doi: 10.1029/2005jd006575.
    [31] Wang Y Q, Zhang X Y, Gong S L, et al. 2008. Surface observation of sand and dust storm in East Asia and its application in CUACE/Dust [J]. Atmospheric Chemistry and Physics, 8: 545-553.
    [32] White B R. 1979. Soil transport by winds on Mars [J]. J. Geophys. Res., 84 (B9): 4643-4651.
    [33] Xu X K, Levy J K, Lin Z H, et al. 2006. An investigation of sand-dust storm events and land surface characteristics in China using NOAA NDVI data [J]. Global and Planetary Change, 52 (1-4): 182-196.
    [34] 叶笃正, 丑纪范, 刘纪远, 等. 2000. 关于我国华北沙尘天气的成因与治理对策 [J]. 地理学报, 55 (5): 513-521. Ye Duzheng, Chou Jifan, Liu Jiyuan, et al. 2000. Causes of sand-stormy weather in Northern China and contral measures [J]. Acta Geographica Sinica (in Chinese), 55 (5): 513-521.
    [35] 张宏升, 朱好, 彭艳, 等. 2007. 沙尘天气过程沙地下垫面沙尘通量的获取与分析研究 [J]. 气象学报, 65 (5): 744-752. Zhang Hongsheng, Zhu Hao, Peng Yan, et al. 2007. Experiment on dust flux during dust storm periods over sand desert area [J]. Acta Meterologica Sinica (in Chinese), 65 (5): 744-752.
    [36] 张仁健, 石广玉, 金井豊, 等. 2002. 北京2002年春季沙尘暴天气的TSP质量浓度和数浓度谱分布 [J]. 过程工程学报, 2 (增刊): 289-292. Zhang Renjian, Shi Guangyu, Yutaka Kanai, et al. 2000. TSP mass concentration and number concentration of particles in dust storm weather in 2002 spring of Beijing [J]. The Chinese Journal of Process Engineering (in Chinese), 2 (Suppl.): 289-292.
    [37] 张时煌, 彭公炳, 黄攻. 2004a. 基于地理信息系统技术的土壤质地分类特征提取与数据融合 [J]. 气候与环境研究, 9 (1):65-79. Zhang Shihuang, Peng Gongbing, Huang Mei. 2004a. The feature extraction and data fusion of regional soil textures based on GIS techniques [J]. Climatic and Environmental Research (in Chinese), 9 (1): 65-79.
    [38] 张时煌, 彭公炳, 黄攻. 2004b. 基于遥感与地理信息系统支持下的地表植被特征参数反演 [J]. 气候与环境研究, 9 (1): 80-91. Zhang Shihuang, Peng Gongbing, Huang Mei. 2004b. Derivation of earth surface parameters in vegetation properties supported by GIS techniques [J]. Climatic and Environmental Research (in Chinese), 9 (1): 80-91.
    [39] Zhang X Y, Gong S L, Shen Z X, et al. 2003. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. Network observations [J]. J. Geophys. Res., 108 (D9): 4261, doi: 10.1029/2002JD002632.
    [40] Zhao T L, Gong S L, Zhang X Y, et al. 2006. An assessment of dust emission schemes in modeling East Asian dust storms [J]. J. Geophys. Res., 111 (D5): D05S90, doi:10.1029/2004jd005746.Zhou C H, Gong S L, Zhang X Y, et al. 2008. Development and evaluation of an operational SDS forecasting system for East Asia: CUACE/Dust [J]. Atmospheric Chemistry and Physics, 8 (4): 787-798.
  • 加载中
计量
  • 文章访问数:  3794
  • HTML全文浏览量:  14
  • PDF下载量:  6718
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-04
  • 修回日期:  2013-06-25

目录

    /

    返回文章
    返回