高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CloudSat/CALIPSO资料的海陆上空中云的物理属性分析

霍娟

霍娟. 基于CloudSat/CALIPSO资料的海陆上空中云的物理属性分析[J]. 气候与环境研究, 2015, 20(1): 30-40. doi: 10.3878/j.issn.1006-9585.2014.13188
引用本文: 霍娟. 基于CloudSat/CALIPSO资料的海陆上空中云的物理属性分析[J]. 气候与环境研究, 2015, 20(1): 30-40. doi: 10.3878/j.issn.1006-9585.2014.13188
HUO Juan. Physical Properties of Mid-Level Clouds Based on CloudSat/CALIPSO Data over Land and Sea[J]. Climatic and Environmental Research, 2015, 20(1): 30-40. doi: 10.3878/j.issn.1006-9585.2014.13188
Citation: HUO Juan. Physical Properties of Mid-Level Clouds Based on CloudSat/CALIPSO Data over Land and Sea[J]. Climatic and Environmental Research, 2015, 20(1): 30-40. doi: 10.3878/j.issn.1006-9585.2014.13188

基于CloudSat/CALIPSO资料的海陆上空中云的物理属性分析

doi: 10.3878/j.issn.1006-9585.2014.13188
基金项目: 国家自然科学基金项目41275040,中国科学院战略先导碳专项XDA05040200

Physical Properties of Mid-Level Clouds Based on CloudSat/CALIPSO Data over Land and Sea

  • 摘要: 利用CloudSat和CALIPSO卫星云产品数据分析了2007年1月至2010年12月中国华北(陆地A1)、日本海(近海A2)和太平洋地区(远海A3)的中云(高积云Ac和高层云As)分布特征.3个地区全年中云平均发生概率近1/3,As的发生概率高于Ac.As高度主要位于4~8 km,Ac则集中于高度3.5~5.5 km范围,中云垂直及水平尺度从陆地向深海逐步增加.位于对流层中部的中云其所处位置温度使冰晶和过冷水状态的液态水能够同时存在.统计结果表明As中冰态粒子含量占绝对多数,Ac中液态和冰态各占比例彼此相当.As与Ac中IER(冰晶有效粒子半径)分布与高度均呈负相关关系,IER谱分布主要范围为35~80 μm.As中LER(液水有效粒子半径)与高度呈正相关特征,但Ac中这一特征明显减弱,Ac及As中LER主要分布范围为5~15 μm.As及Ac中IWC及LWC谱分布比较分散,与高度之间的相关性亦不明显.
  • [1] Adhikari L, Wang Z, Deng M. 2012. Seasonal variations of Antarctic clouds observed by CloudSat and CALIPSO satellites [J]. J. Geophys. Res., 117, D04202, doi: 10.1029/2011JD016719.
    [2] Albrecht B A. 1989. Aerosols, cloud microphysics, and fractional cloudiness [J]. Science, 245: 1227-1230.
    [3] Avery M, Winker D, Heymsfield A, et al. 2012. Cloud ice water content retrieved from the CALIOP space-based lidar [J]. Geophys. Res. Lett., 39 (5): L05808, doi: 10.1029/2011GL050545.
    [4] Cess R D, Potter G L, Blanchet J P, et al. 1989. Interpretation of cloud- climate feedback as produced by 14 atmospheric general circulation models [J]. Science, 245 (4917): 513-516.
    [5] Chan M A, Comiso J C. 2011. Cloud features detected by MODIS but not by CloudSat and CALIOP[J]. Geophys. Res. Lett., 38 (24): L24813, doi: 10.1029/2011GL050063.
    [6] Delanoë J, Hogan R J. 2008. A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer [J]. J. Geophys. Res., 113 (D7): D07204, doi: 10.1029/2007JD009000.
    [7] Delanoë J, Hogan R J. 2010. Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds [J]. J. Geophys. Res., 115 (D4): D00H29, doi: 10.1029/2009JD012346.
    [8] Deng M, Mace G G, Wang Z, et al. 2010. Tropical composition, cloud and climate coupling experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar [J]. J. Geophys. Res., 115 (D10): D00J15, doi: 10.1029/2009JD013104.
    [9] Harrison E F, Minnis P, Barkstrom B R, et al. 1990. Seasonal variation of cloud radiative forcing derived from the earth radiation budget experiment [J]. J. Geophys. Res., 95 (D11): 18687-18703.
    [10] Hartmann D L, Ockert-Bell M E, Michelsen M L. 1992. The effect of cloud type on earth's energy balance: Global analysis [J]. J. Climate, 5: 1281- 1304.
    [11] Hu Y X, Winker D, Vaughan M, et al. 2009. CALIPSO/CALIOP cloud phase discrimination algorithm [J]. J. Atmos. Oceanic Technol., 26 (11): 2293-2309.
    [12] Liou K N. 1986. Influence of cirrus clouds on weather and climate processes: A global perspective [J]. Mon. Wea. Rev., 114 (6): 1167-1199.
    [13] Liou K N. 2002. An Introduction to Atmospheric Radiation (Second Edition)
    [M]. Salt Lake City: Academic Press, 583pp.
    [15] Mason B J. 1971. The Physics of Clouds[M]. Oxford: Oxford University Press, 884pp.
    [16] Platt C M R. 1979. Remote sounding of high clouds: I. Calculation of visible and infrared optical properties from lidar and radiometer measurements [J]. J. Appl. Meteor., 18: 1130-1143.
    [17] Ramanathan V, Cess R D, Harrison E F, et al. 1989. Cloud-radiative forcing and climate: Results from the earth radiation budget experiment[J]. Science, 243 (4887): 57-63, doi: 10.1126/science.243.4887.57.
    [18] Segal M, Davis J. 1992. The impact of deep cumulus reflection on the ground-level global irradiance [J]. J. Appl. Meteor., 31: 217-222.
    [19] Stephens G L. 2005. Cloud feedbacks in the climate system: A critical review [J]. J. Climate, 18 (2): 237-273.
    [20] Stephens G L, Vane D G, Boain R J. 2002. The CloudSat mission and the A-train: A new dimension of space-based observations of clouds and precipitation [J]. Bull. Amer. Meteor. Soc., 83 (12): 1771-1790.
    [21] Treut H L, Somerville R, Cubasch U, et al. 2007. Historical overview of climate change [M]// Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
    [22] Wetherald R T, Manabe S. 1988. Cloud feedback processes in a general circulation model [J]. J. Atmos. Sci., 45 (8): 1397-1416.
    [23] Wilson C A, Mitchell J F B. 1986. Diurnal variation and cloud in a general circulation model [J]. Quart. J. Roy. Meteor. Soc., 112 (472): 347-369.
    [24] Winker D M, Hunt W H, McGill M J. 2007. Initial performance assessment of CALIOP [J]. Geophys. Res. Lett., 34 (19): L19803, doi: 10.1029/ 2007GL030135.
    [25] 杨大生, 王普才. 2012. 中国地区夏季云粒子尺寸的时空分布特征[J]. 气候与环境研究, 17 (4): 433-443, doi: 10.3878/j.issn.1006-9585.2011. 10066. Yang Dasheng, Wang Pucai. 2012. Tempo-spatial distribution characteristics of cloud particle size over China during summer [J]. Climatic and Environmental Research (in Chinese), 17 (4): 433-443.
    [26] Zhang D M, Wang Z, Liu D. 2010. A global view of midlevel liquid-layer topped stratiform cloud distribution and phase partition from CALIPSO and CloudSat measurements [J]. J. Geophys. Res., 115 (D4): DOOH13, doi: 10.1029/2009JD012143.
    [27] Zhang M H, Lin W Y, Klein S A, et al. 2005. Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements [J]. J. Geophys. Res., 110: D15S02, doi: 10.1029/2004JD005021.
  • 加载中
计量
  • 文章访问数:  3248
  • HTML全文浏览量:  15
  • PDF下载量:  2403
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-06

目录

    /

    返回文章
    返回