高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西北太平洋热带气旋快速加强过程中的水汽特征分析

尹浩 王咏青 钟玮

尹浩, 王咏青, 钟玮. 西北太平洋热带气旋快速加强过程中的水汽特征分析[J]. 气候与环境研究, 2015, 20(4): 433-442. doi: 10.3878/j.issn.1006-9585.2015.14210
引用本文: 尹浩, 王咏青, 钟玮. 西北太平洋热带气旋快速加强过程中的水汽特征分析[J]. 气候与环境研究, 2015, 20(4): 433-442. doi: 10.3878/j.issn.1006-9585.2015.14210
YIN Hao, WANG Yongqing, ZHONG Wei. A Statistical Analysis of Moisture Characteristics during the Rapid Intensification of Tropical Cyclones over the Northwestern Pacific[J]. Climatic and Environmental Research, 2015, 20(4): 433-442. doi: 10.3878/j.issn.1006-9585.2015.14210
Citation: YIN Hao, WANG Yongqing, ZHONG Wei. A Statistical Analysis of Moisture Characteristics during the Rapid Intensification of Tropical Cyclones over the Northwestern Pacific[J]. Climatic and Environmental Research, 2015, 20(4): 433-442. doi: 10.3878/j.issn.1006-9585.2015.14210

西北太平洋热带气旋快速加强过程中的水汽特征分析

doi: 10.3878/j.issn.1006-9585.2015.14210
基金项目: 国家自然科学基金面上项目 41275002、41175054,江苏省“333高层次人才培养工程”,江苏高校优势学科建设工程资助项目(PAPD)

A Statistical Analysis of Moisture Characteristics during the Rapid Intensification of Tropical Cyclones over the Northwestern Pacific

  • 摘要: 利用NCEP的1°(纬度)×1°(经度)全球最终分析资料和JTWC(Joint Typhoon Warning Center)最佳路径资料,对 2002~2011年西北太平洋热带气旋(TC)非减弱阶段快速加强(Rapid Intensification,RI)和缓慢加强及强度稳定(Non-RI)过程中,TC环境场及其内部各区域水汽分布和输送特征进行统计分析,揭示水汽因子对TC随后24 h强度变化的影响,为TC强度突变的趋势预报提供依据。结果表明:对流层低层900 hPa层半径3~10纬距区域平均相对湿度(RH_3-10)能明显区分RI与Non-RI过程,说明西北太平洋TC强度变化对水汽的敏感高度较大西洋更接近洋面;RI初始时刻的RH_3-10显著大于Non-RI,而水平水汽通量(F_all)则弱于Non-RI,说明RI开始时刻TC环境表现为高水汽含量和较小的水汽输送,而随着RI过程TC内强对流发展对水汽的消耗,水汽含量明显减小故水汽通量则出现增强;RI和Non-RI过程水汽因子的分布和输送在TC内核区和外雨带差异明显,初始时刻RI过程净水汽获得区域大于Non-RI。相关性分析同样表明,适宜的相对湿度和水汽通量是非减弱阶段RI的有效潜势预报因子。
  • [1] Carrasco C A, Landsea C W, Lin Y L. 2014. The influence of tropical cyclone size on its intensification [J]. Wea. Forecasting, 29 (3): 582-590, doi: 10.1175/WAF-D-13-00092.1.
    [2] 陈联寿, 丁一汇. 1979. 西太平洋台风概论 [M]. 北京: 科学出版社, 31-38. Chen Lianshou, Ding Yihui. 1979. Introduction to the Western Pacific Typhoon (in Chinese) [M]. Beijing: Science Press, 31-38.
    [3] DeMaria M, Kaplan J. 1997. An operational evaluation of a Statistical Hurricane Intensity Prediction Scheme (SHIPS) [C]// 22th Conf. on Hurricanes and Tropical Meteorology. Fort Collins: Amer. Meteor. Soc., 280-281.
    [4] 丁金才, 郭英华, 郭永润, 等. 2011. 利用COSMIC资料对17个台风热力结构的合成分析 [J]. 热带气象学报, 27 (1): 31-43. Ding Jincai, Guo Yinghua, Guo Yongrun, et al. 2011. The composite analysis of the thermal structure of 17 typhoons by using cosmic data [J]. Journal of Tropical Meteorology (in Chinese), 27 (1): 31-43, doi: j.issn.1004-4965. 2011.01.004.
    [5] Emanuel K, DesAutels C, Holloway C, et al. 2004. Environmental control of tropical cyclone intensity [J]. J. Atmos. Sci., 61 (7): 843-858, doi: 10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.
    [6] Gall R, Franklin J, Marks F, et al. 2013. The hurricane forecast improvement project [J]. Bull. Amer. Meteor. Soc., 94 (3): 329-343, doi: 10.1175/BAMS-D-12-00071.1.
    [7] 高拴柱, 吕心艳, 王海平, 等. 2012. 热带气旋莫兰蒂 (1010) 强度的观测研究和增强条件的诊断分析 [J]. 气象, 38 (7): 834-840. Gao Shuanzhu, Lü Xinyan, Wang Haiping, et al. 2012. An observational and diagnostic analysis on the intensity and intensity changes of typhoon Meranti (1010) [J]. Meteorological Monthly (in Chinese), 38 (7): 834- 840.
    [8] Gray W M. 1979. Hurricanes: Their formation, structure and likely role in the tropical circulation [M]//Shaw D B. Meteorology over the Tropical Oceans. Bracknell, Berkshire: Royal Meteorological Society, 155-218.
    [9] Hill K A, Lackmann G M. 2009. Influence of environmental humidity on tropical cyclone size [J]. Mon. Wea. Rev., 137 (10): 3294-3315, doi: 10.1175/2009MWR2679.1.
    [10] Holliday C R, Thompson A H. 1979. Climatological characteristics of rapidly intensifying typhoons[J]. Mon. Wea. Rev., 107 (8): 1022-1034, doi: 10.1175/1520-0493(1979)107<1022:CCORIT>2.0.CO;2.
    [11] 黄荣成, 雷小途. 2010. 环境场对近海热带气旋突然增强与突然减弱影响的对比分析 [J]. 热带气象学报, 26 (2): 129-137. Huang Rongcheng, Lei Xiaotu. 2010. Comparative analysis of the influence of environment field on rapid intensifying and weakening of tropical cyclones over offshore waters of China [J]. Journal of Tropical Meteorology (in Chinese), 26(2): 129-137.
    [12] Kaplan J, DeMaria M. 2003. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin[J]. Wea. Forecasting, 18 (6): 1093-1108, doi: 10.1175/1520-0434(2003)018<1093: LCORIT>2.0.CO;2.
    [13] Knaff J A, Sampson C R, DeMaria M. 2005. An operational statistical typhoon intensity prediction scheme for the Western North Pacific [J]. Wea. Forecasting, 20 (4): 688-699, doi: 10.1175/WAF863.1.
    [14] 李英. 2004. 登陆热带气旋维持机制的研究 [D]. 中国气象科学研究院博士学位论文, 34-35. Li Ying. 2004. A study on the sustaining mechanism of landfalling tropical cyclones [D]. Ph. D. dissertation (in Chinese), Chinese Academy of Meteorological Science, 34-35.
    [15] 李英, 陈联寿, 徐祥德. 2005. 水汽输送影响登陆热带气旋维持和降水的数值试验 [J]. 大气科学, 29 (1): 91-98. Li Ying, Chen Lianshou, Xu Xiangde. 2005. Numerical experiments of the impact of moisture transportation on sustaining of the landfalling tropical cyclone and precipitation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29 (1): 91-98.
    [16] Merrill R T. 1984. A comparison of large and small tropical cyclones [J]. Mon. Wea. Rev., 112(7): 1408-1418, doi: 10.1175/1520-0493(1984) 112<1408: ACOLAS>2.0.CO;2.
    [17] Schade L R, Emanuel K A. 1999. The ocean's effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model [J]. J. Atmos. Sci., 56(4): 642-651, doi: 10.1175/1520-0469(1999)056<0642: TOSEOT>2.0.CO;2.
    [18] Schönemann D, Frisius T. 2014. Dynamical system properties of an axisymmetric convective tropical cyclone model [J]. Tellus A, 66: 22456, doi: 10.3402/tellusa.v66.22456.
    [19] Shen W X. 2005. A simple prediction model of hurricane intensity [J]. Quart. J. Roy. Meteor. Soc., 131 (611): 2887-2906, doi: 10.1256/qj.04.109.
    [20] 宋金杰, 王元, 陈佩燕, 等. 2011. 基于偏最小二乘回归理论的西北太平洋热带气旋强度统计预报方法 [J]. 气象学报, 69 (5): 745-756. Song Jinjie, Wang Yuan, Chen Peiyan, et al. 2011. A statistical prediction scheme of tropical cyclone intensity over the western North Pacific based on the partial least square regression [J]. Acta Meteorologica Sinica (in Chinese), 69 (5): 745-756.
    [21] Wang Y Q. 2009. How do outer spiral rainbands affect tropical cyclone structure and intensity? [J]. J. Atmos. Sci., 66 (5): 1250-1273, doi: 10.1175/2008JAS2737.1.
    [22] 吴启树, 沈桐立, 苏银兰, 等. 2006. 2000年第10号台风的水汽分析与试验 [J]. 气象科学, 26 (4): 384-391. Wu Qishu, Shen Tongli, Su Yinlan, et al. 2006. Water vapor analyses and experiments of 0010 typhoon [J]. Scientia Meteorologica Sinica (in Chinese), 26 (4): 384-391.
    [23] 杨玉震, 王耀领, 胡邦辉, 等. 2010. 西北太平洋热带气旋强度统计动力预报的改进模型 [J]. 海洋预报, 27 (3): 1-6. Yang Yuzhen, Wang Yaoling, Hu Banghui, et al. 2010. A improved statistic-dynamical model for tropical cyclone intensity forecasting in Northwest Pacific [J]. Marine Forecasts, 27 (3): 1-6.
    [24] Ying Y, Zhang Q H. 2012. A model study on tropical cyclone structural changes in response to ambient moisture variations [C]// 30th Conf. on Hurricanes and Tropical Meteorology. Florida: Amer. Meteor. Soc.
  • 加载中
计量
  • 文章访问数:  2134
  • HTML全文浏览量:  16
  • PDF下载量:  2170
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-26

目录

    /

    返回文章
    返回