高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于线性奇异向量和条件非线性最优扰动差别的一个注记

霍振华 段晚锁

霍振华, 段晚锁. 关于线性奇异向量和条件非线性最优扰动差别的一个注记[J]. 气候与环境研究, 2015, 20(6): 715-725. doi: 10.3878/j.issn.1006-9585.2015.14259
引用本文: 霍振华, 段晚锁. 关于线性奇异向量和条件非线性最优扰动差别的一个注记[J]. 气候与环境研究, 2015, 20(6): 715-725. doi: 10.3878/j.issn.1006-9585.2015.14259
HUO Zhenhua, DUAN Wansuo. A Note on the Differences between Linear Singular Vectors and Conditional Nonlinear Optimal Perturbation[J]. Climatic and Environmental Research, 2015, 20(6): 715-725. doi: 10.3878/j.issn.1006-9585.2015.14259
Citation: HUO Zhenhua, DUAN Wansuo. A Note on the Differences between Linear Singular Vectors and Conditional Nonlinear Optimal Perturbation[J]. Climatic and Environmental Research, 2015, 20(6): 715-725. doi: 10.3878/j.issn.1006-9585.2015.14259

关于线性奇异向量和条件非线性最优扰动差别的一个注记

doi: 10.3878/j.issn.1006-9585.2015.14259
基金项目: 国家自然科学基金项目41176013、41376018

A Note on the Differences between Linear Singular Vectors and Conditional Nonlinear Optimal Perturbation

  • 摘要: 奇异向量(singular vectors, SVs)和条件非线性最优扰动(conditional nonlinear optimal perturbation, CNOP)已广泛应用于研究大气—海洋系统的不稳定性以及与其相关的可预报性、集合预报和目标观测问题研究。本文首先回顾了SVs和CNOP的发展历史,并简单描述了它们的基本原理;然后针对二维正压准地转模式,使用不同的范数组合,分析了第一线性奇异向量(first singular vector, FSV)和CNOP之间的异同。结果表明,当优化时间较短时,度量SVs和CNOP大小的范数不同也将导致FSV和CNOP相差很大,而当度量SVs和CNOP大小的范数相同时,FSV和CNOP之间的差别则主要是由非线性物理过程作用的结果。因此,针对不同的物理问题,应该选取合适的度量范数研究FSV和CNOP以及其所引起的大气或海洋动力学的异同,从而揭示非线性物理过程的影响机理。
  • [1] Buizza R, Palmer T N. 1995. The singular-vector structure of the atmospheric global circulation [J]. J. Atmos. Sci., 52: 1434-1456, doi: 10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2.
    [2] Buizza R, Cardinali C, Kelly G, et al. 2007. The value of observations. Ⅱ: The value of observations located in singular-vector-based target areas [J]. Quart. J. Roy. Meteor. Soc., 133: 1817-1832, doi: 10.1002/qj.149.
    [3] Descamps L, Ricard D, Joly A, et al. 2007. Is a real cyclogenesis case explained by generalized linear baroclinic instability? [J]. J. Atmos. Sci., 64: 4287-4308, doi: 10.1175/2007JAS2292.1.
    [4] Duan W S, Mu M. 2009. Conditional nonlinear optimal perturbation: Applications to stability, sensitivity, and predictability [J]. Science in China Series D: Earth Sciences, 52 (7): 883-906, doi:10.1007/ s11430-009-0090-3.
    [5] Duan W S, Zhang R. 2010. Is model parameter error related to a significant spring predictability barrier for El Niño events? Results from a theoretical model [J]. Advances in Atmospheric Sciences, 27: 1003-1013, doi:10. 1007/s00376-009-9166-4.
    [6] Duan W S, Mu M, Wang B. 2004. Conditional nonlinear optimal perturbations as the optimal precursors for El Niño-Southern Oscillation events [J]. J. Geophys. Res., 109 (D23), doi: 10.1029/2004JD004756.
    [7] Duan W S, Yu Y S, Xu H, et al. 2013. Behaviors of nonlinearities modulating the El Niño events induced by optimal precursory disturbances [J]. Climate Dyn., 40: 1399-1413, doi: 10.1007/s00382-012-1557-z.
    [8] 段晚锁, 丁瑞强, 周菲凡. 2013. 数值天气预报和气候预测可预报性研究的若干动力学方法 [J]. 气候与环境研究, 18 (4): 524-538. Duan Wansuo, Ding Ruiqiang, Zhou Feifan. 2013. Several dynamical methods used in predictability studies for numerical weather forecasts and climate prediction [J]. Climatic and Environmental Research (in Chinese), 18 (4): 524-538, doi: 10.3878/j.issn.1006-9585.2012.12009.
    [9] Ehrendorfer M, Tribbia J J. 1997. Optimal prediction of forecast error covariances through singular vectors [J]. J. Atmos. Sci., 54: 286-313, doi: 10.1175/1520-0469(1997)054<0286:OPOFEC>2.0.CO;2.
    [10] Gelaro R, Buizza R, Palmer T N, et al. 1998. Sensitivity analysis of forecast errors and the construction of optimal perturbations using singular vectors [J]. J. Atmos. Sci., 55: 1012-1037, doi:10.1175/1520-0469(1998)055< 1012:SAOFEA>2.0.CO;2.
    [11] 姜智娜. 2007. 条件非线性最优扰动在集合预报中的应用 [D]. 中国科学院大气物理研究所博士学位论文, 116pp. Jiang Zhina. 2007. Application of conditional nonlinear optimal perturbation to ensemble prediction [D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences, 116pp.
    [12] Jiang Z N, Mu M. 2009. A comparison study of the methods of conditional nonlinear optimal perturbations and singular vectors in ensemble prediction [J]. Advances in Atmospheric Sciences, 26 (3): 465-470, doi: 10.1007/s00376-009-0465-6.
    [13] Jiang Z N, Mu M, Wang D H. 2009. Ensemble prediction experiments using conditional nonlinear optimal perturbation [J]. Science in China Series D: Earth Sciences, 52 (4): 511-518, doi: 10.1007/s11430-009-0042-y.
    [14] Langland R H. 2005. Issues in targeted observing [J]. Quart. J. Roy. Meteor. Soc., 131: 3409-3425, doi: 10.1256/qj.05.130.
    [15] Leutbecher M, Palmer T N. 2008. Ensemble forecasting [J]. J. Comput. Phys., 227: 3515-3539, doi: 10.1016/j.jcp.2007.02.014.
    [16] Lorenz E N. 1965. A study of the predictability of a 28-variable atmospheric model [J]. Tellus, 17: 321-333, doi: 10.1111/j.2153-3490.1965.tb01424.x.
    [17] Lorenz E N. 1975. The physical bases of climate and climate modeling, in: Climate Predictability. GARP Publication Series 16, World Meteorological Association, Geneva, 132-136.
    [18] Molteni F, Buizza R, Palmer T N, et al. 1996. The ECMWF ensemble prediction system: Methodology and validation [J]. Quart. J. Roy. Meteor. Soc., 122: 73-119, doi: 10.1002/qj.49712252905.
    [19] Mu M, Jiang Z N. 2008. A new approach to the generation of initial perturbations for ensemble prediction: Conditional nonlinear optimal perturbation [J]. Chinese Science Bulletin, 53 (13): 2062-2068, doi:10. 1007/s11434-008-0272-y.
    [20] 穆穆, 段晚锁. 2013. 条件非线性最优扰动在可预报性问题研究中的应用 [J]. 大气科学, 37 (2): 281-296. Mu Mu, Duan Wansuo. 2013. Applications of conditional nonlinear optimal perturbation to the studies of predictability problems [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (2): 281-296, doi: 10.3878/j.issn.1006-9895.2012.12319.
    [21] Mu M, Duan W S, Wang J F. 2002. Nonlinear optimization problems in atmospheric and oceanic sciences [J]. Computational Mathematics and Modeling, Thailand, Special Volume, 155-164.
    [22] Mu M, Duan W S, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications [J]. Nonlinear Processes in Geophysics, 10: 493-501, doi: 10.5194/npg-10-493-2003.
    [23] 穆穆, 王洪利, 周菲凡. 2007. 条件非线性最优扰动方法在适应性观测研究中的初步应用 [J]. 大气科学, 31 (6): 1102-1112. Mu Mu, Wang Hongli, Zhou Feifan. 2007. A preliminary application of conditional nonlinear optimal perturbation to adaptive observation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31 (6): 1102-1112, doi: 10.3878/j.issn.1006-9895.2007.06.06.
    [24] Mu M, Duan W S, Wang B. 2007a. Season-dependent dynamics of nonlinear optimal error growth and El Niño-Southern Oscillation predictability in a theoretical model [J]. J. Geophys. Res., 112: D10113, doi: 10.1029/2005JD006981.
    [25] Mu M, Xu H, Duan W S. 2007b. A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model [J]. Geophys. Res. Lett., 34: L03709, doi: 10.1029/2006GL027412.
    [26] Mu M, Zhou F F, Wang H L. 2009. A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: Conditional nonlinear optimal perturbation [J]. Mon. Wea. Rev., 137: 1623-1639, doi: 10.1175/2008MWR2640.1.
    [27] Mu M, Duan W S, Wang Q, et al. 2010. An extension of conditional nonlinear optimal perturbation approach and its applications [J]. Nonlinear Processes in Geophysics, 17: 211-220, doi: 10.5194/npg-17-211-2010.
    [28] Mureau R, Molteni F, Palmer T N. 1993. Ensemble prediction using dynamically conditioned perturbations [J]. Quart. J. Roy. Meteor. Soc., 119: 299-323, doi: 10.1002/qj.49711951005.
    [29] Palmer T N, Buizza R, Molteni F, et al. 1994. Singular vectors and the predictability of weather and climate [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 348: 459-475, doi: 10.1098/rsta.1994.0105.
    [30] Palmer T N, Gelaro R, Barkmeijer J, et al. 1998. Singular vectors, metrics, and adaptive observations [J]. J. Atmos. Sci., 55: 633-653, doi:10.1175/ 1520-0469(1998)055<0633:SVMAAO>2.0.CO;2.
    [31] Penland C, Sardeshmukh P D. 1995. The optimal growth of tropical sea surface temperature anomalies [J]. J. Climate, 8: 1999-2024, doi:10.1175/ 1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.
    [32] Qin X H, Mu M. 2011. A study on the reduction of forecast error variance by three adaptive observation approaches for tropical cyclone prediction [J]. Mon. Wea. Rev., 139: 2218-2232, doi: 10.1175/2010MWR3327.1.
    [33] Rivière O, Lapeyre G, Talagrand O. 2008. Nonlinear generalization of singular vectors: Behavior in a baroclinic unstable flow [J]. J. Atmos. Sci., 65: 1896-1911, doi: 10.1175/2007JAS2378.1.
    [34] Sun G D, Mu M. 2009. Nonlinear feature of the abrupt transitions between multiple equilibria states of an ecosystem model [J]. Advances in Atmospheric Sciences, 26 (2): 293-304, doi: 10.1007/s00376-009-0293-8.
    [35] Terwisscha van Scheltinga A D, Dijkstra H A. 2008. Conditional nonlinear optimal perturbations of the double-gyre ocean circulation [J]. Nonlinear Processes in Geophysics, 15: 727-734, doi: 10.5194/npg-15-727-2008.
    [36] Trefethen L N, Trefethen A E, Reddy S C, et al. 1993. Hydrodynamic stability without eigenvalues [J]. Science, 261: 578-584, doi:10.1126/ science.261.5121.578.
    [37] 谢东东, 孙国栋, 邵爱梅, 等. 2013. 草原生态系统模式中参数不确定性导致的模拟结果不确定性研究 [J]. 气候与环境研究, 18 (3): 375-386. Xie Dongdong, Sun Guodong, Shao Aimei, et al. 2013. A study of simulation uncertainties caused by parameter uncertainties in a grassland ecosystem model [J]. Climatic and Environmental Research (in Chinese), 18 (3): 375-386, doi: 10.3878/j.issn.1006-9585.2012.11179.
    [38] Yu Y S, Mu M, Duan W S. 2012. Does model parameter error cause a significant “spring predictability barrier” for El Niño events in the Zebiak-Cane model? [J]. J. Climate, 25: 1263-1277, doi:10.1175/ 2011JCLI4022.1.
    [39] Zheng, F, Wang H, Zhu J. 2009. ENSO ensemble prediction: Initial error perturbations vs. model error perturbations [J]. Chinese Science Bulletin, 54 (14): 2516-2523, doi: 10.1007/s11434-009-0179-2.
    [40] Zhou F F, Mu M. 2012. The impact of horizontal resolution on the CNOP and on its identified sensitive areas for tropical cyclone predictions [J]. Advances in Atmospheric Sciences, 29 (1): 36-46, doi:10.1007/ s00376-011-1003-x.
    [41] 周菲凡, 张贺. 2014. 基于CNOP方法的台风目标观测中三种敏感区确定方案的比较研究 [J]. 大气科学, 38 (2): 261-272. Zhou Feifan, Zhang He. 2014. Study of the schemes based on CNOP method to identify sensitive areas for typhoon targeted observations [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (2): 261-272, doi: 10.3878/j.issn.1006-9895.2013.13129.
  • 加载中
计量
  • 文章访问数:  1882
  • HTML全文浏览量:  27
  • PDF下载量:  2189
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-04
  • 修回日期:  2015-05-13

目录

    /

    返回文章
    返回