高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用MOPITT资料分析亚洲地区对流层CO的时空分布特征

岑炬辉 何文英 陈洪滨

岑炬辉, 何文英, 陈洪滨. 利用MOPITT资料分析亚洲地区对流层CO的时空分布特征[J]. 气候与环境研究, 2015, 20(6): 635-644. doi: 10.3878/j.issn.1006-9585.2015.15085
引用本文: 岑炬辉, 何文英, 陈洪滨. 利用MOPITT资料分析亚洲地区对流层CO的时空分布特征[J]. 气候与环境研究, 2015, 20(6): 635-644. doi: 10.3878/j.issn.1006-9585.2015.15085
CEN Juhui, HE Wenying, CHEN Hongbin. Spatial and Temporal Distribution Characteristics of Tropospheric CO over Asia Using MOPITT Data[J]. Climatic and Environmental Research, 2015, 20(6): 635-644. doi: 10.3878/j.issn.1006-9585.2015.15085
Citation: CEN Juhui, HE Wenying, CHEN Hongbin. Spatial and Temporal Distribution Characteristics of Tropospheric CO over Asia Using MOPITT Data[J]. Climatic and Environmental Research, 2015, 20(6): 635-644. doi: 10.3878/j.issn.1006-9585.2015.15085

利用MOPITT资料分析亚洲地区对流层CO的时空分布特征

doi: 10.3878/j.issn.1006-9585.2015.15085
基金项目: 国家重点基础研究发展计划2010CB950802、2010CB950804,北京市自然科学基金8153039

Spatial and Temporal Distribution Characteristics of Tropospheric CO over Asia Using MOPITT Data

  • 摘要: 目前CO的模式模拟结果与实际观测存在着很大的差别,需要结合观测资料的分析研究来验证和改善模式能力。而南亚地区源汇的复杂性和站点观测资料的严重不足,使得对该地区CO分布与变化特征的认识更为有限。本文尝试使用2000~2011年MOPITT卫星资料,分析该地区CO的气候态空间分布特征,并结合再分析风场和卫星出射长波辐射资料,对大气运动影响CO分布进行探讨。主要结论是:1)南亚对流层中上层四季都存在CO高浓度带,其位置随着季节有南北变化,其中夏季高值带范围最小,但极值最大。2)在南亚季风区东侧,夏季对流层CO垂直廓线呈连续的高值分布,而在西侧对流层中上层出现孤立的高值分布,验证了东风急流的水平输送效果。3)CO浓度的季节变化在南北(27.5°N/12.5°S)纬度基本反相,并且在12年内500 hPa高度上呈减少趋势,而在300 hPa高度上有增加趋势。4)南亚中上对流层CO浓度值的分布和赤道附近垂直风场之间存在较好的相关性,对于该区域CO的来源问题提供了一个新的研究方向。
  • [1] Barret B, Ricaud P, Mari C, et al. 2008. Transport pathways of CO in the African upper troposphere during the monsoon season: A study based upon the assimilation of spaceborne observations [J]. Atmospheric Chemistry and Physics, 8: 3231-3246, doi: 10.5194/acp-8-3231-2008. 卞建春, 严仁嫦, 陈洪滨. 2011. 亚洲夏季风是低层污染物进入平流层的重要途径 [J]. 大气科学, 35 (5): 897-902. Bian Jianchun, Yan Renchang, Chen Hongbing. 2011. Tropospheric pollutant transport to the stratosphere by Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35 (5): 897-902.
    [2] 陈洪滨, 卞建春, 吕达仁. 2006. 上对流层—下平流层交换过程研究的进展与展望 [J]. 大气科学, 30 (5): 813-820. Chen Hongbin, Bian Jianchun, Lü Daren. 2006. Advances and prospects in the study of stratosphere-troposphere exchange [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30 (5): 813-820.
    [3] Crutzen P. 1973. A discussion of the chemistry of some minor constituents in the stratosphere and troposphere [J]. Pure Appl. Geophys., 106-108 (1): 1385-1399, doi: 10.1007/BF00881092.
    [4] Dethof A, O'Neill A, Slingo J M, et al. 1999. A mechanism for moistening the lower stratosphere involving the Asian summer monsoon [J]. Quart. J. Roy. Meteor. Soc., 125: 1079-1106, doi: 10.1002/qj.1999.49712555602.
    [5] Duncan B N, Logan J A, Bey I, et al. 2007. Global budget of CO, 1988-1997: Source estimates and validation with a global model [J]. J. Geophys. Res., 112: D22301, doi: 10.1029/2007JD008459.
    [6] Emmons L K, Deeter M N, Gille J C, et al. 2004. Validation of measurements of pollution in the troposphere (MOPITT) CO retrievals with aircraft in situ profiles [J]. J. Geophys. Res., 109, doi:10.1029/ 2003JD004101.
    [7] Emmons L K, Edwards D P, Deeter M N, et al. 2009. Measurements of pollution in the troposphere (MOPITT) validation through 2006 [J]. Atmos. Chem. Phys., 9, 1795-1803, doi: 10.5194/acp-9-1795-2009.
    [8] Fadnavis S, Buchunde P, Ghude S D, et al. 2011. Evidence of seasonal enhancement of CO in the upper troposphere over India [J]. Int. J. Remote Sens., 32 (22): 7441-7452, doi: 10.1080/01431161.2010.523733.
    [9] Fortems-Cheiney A, Chevallier F, Pison I, et al. 2011. Ten years of CO emissions as seen from Measurements of Pollution in the Troposphere (MOPITT) [J]. J. Geophys. Res., 116: D05304, doi: 10.1029/ 2010JD014416.
    [10] Granier C, Pétron G, Mü ller J F, et al. 2000. The impact of natural and anthropogenic hydrocarbons on the tropospheric budget of carbon monoxide [J]. Atmos. Environ., 34: 5255-5270, doi: 10.1016/S1352-2310(00)00299-5.
    [11] Heald C L, Jacob D J, Fiore A M, et al. 2003. Asian outflow and transpacific transport of carbon monoxide and ozone pollution: An integrated satellite, aircraft, and model perspective [J]. J. Geophys. Res., 108 (D24), doi: 10.1029/2003JD003507.
    [12] Highwood E J, Hoskins B J. 1998. The tropical tropopause [J]. Quart. J. Roy. Meteor. Soc., 124: 1579-1604, doi: 10.1002/qj.49712454911.
    [13] Holloway T, Levy H II, Kasibhatla P. 2000. Global distribution of carbon monoxide [J]. J. Geophys. Res., 105: 12123-12147, doi: 10.1029/ 1999JD901173. Hoskins B J, Rodwell M J. 1995. A model of the Asian summer monsoon. Part I: The global scale [J]. J. Atmos. Sci., 52: 1329-1340, doi: 10.1175/ 1520-0469(1995)052<1329:AMOTAS>2.0.CO;2.
    [14] 蒋尚诚, 朱亚芬. 1990. OLR的应用和图集 [M]. 北京: 北京大学出版社, 1-37. Jiang Shangcheng, Zhu Yafen. 1990. The Application and Atlas of OLR (in Chinese) [M]. Beijing: The Peking University Publishing House, 1-37.
    [15] Khalil M A K, Rasmussen R A. 1988. Carbon monoxide in the Earth's atmosphere: Indications of a global increase [J]. Nature, 332: 242-245, doi: 10.1038/332242a0.
    [16] Khalil M A K, Rasmussen R A. 1994. Global decrease in atmospheric carbon monoxide concentration [J]. Nature, 370: 639-641, doi: 10.1038/ 370639a0.
    [17] Levy H II. 1971. Normal atmosphere: Large radical and formaldehyde concentrations predicted [J]. Science, 173: 141-143, doi: 10.1126/science. 173.3992.141.
    [18] Li Q B, Jiang J H, Wu D L, et al. 2005. Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations [J]. Geophys. Res. Lett., 32: L14826, doi: 10.1029/ 2005GL022762.
    [19] Logan J A, Prather M J, Wofsy S C, et al. 1981. Tropospheric chemistry: A global perspective [J]. J. Geophys. Res., 86: 7210-7254, doi: 10.1029/ JC086iC08p07210.
    [20] 陆春晖, 丁一汇. 2013. 平流层和对流层相互作用的研究进展 [J]. 气象科技进展, 3 (2): 6-21. Lu Chunhui, Ding Yihui. 2013. Progress in the study of stratosphere-troposphere interaction [J]. Advances in Meteorological Science and Technology (in Chinese), 3 (2): 6-21.
    [21] Novelli P C, Masarie K A, Tans P P, et al. 1994. Recent changes in atmospheric carbon monoxide [J]. Science, 263: 1587-1590, doi: 10.1126/science.263.5153.1587.
    [22] Novelli P C, Masarie K A, Lang P M. 1998. Distributions and recent changes of carbon monoxide in the lower troposphere [J]. J. Geophys. Res., 103: 19015-19033, doi: 10.1029/98JD01366.
    [23] Novelli P C, Masarie K A, Lang P M, et al. 2003. Reanalysis of tropospheric CO trends: Effects of the 1997-1998 wildfires [J]. J. Geophys. Res., 108 (D15), doi: 10.1029/2002JD003031.
    [24] Park M, Randel W J, Kinnison D E, et al. 2004. Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations [J]. J. Geophys. Res., 109: D03302, doi: 10.1029/2003JD003706.
    [25] Park M, Randel W J, Gettelman A, et al. 2007. Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers [J]. J. Geophys. Res., 112: D16309, doi: 10.1029/ 2006JD008294.
    [26] Park M, Randel W J, Emmons L K, et al. 2008. Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data [J]. Atmospheric Chemistry and Physics, 8: 757-764, doi: 10.5194/acp-8-757-2008.
    [27] Park M, Randel W J, Emmons L K, et al. 2009. Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART) [J]. J. Geophys. Res., 114: D08303, doi: 10.1029/2008JD010621.
    [28] Phadnis M J, Levy H II, Moxim W J. 2002. On the evolution of pollution from South and Southeast Asia during the winter-spring monsoon [J]. J. Geophys. Res., 107 (D24), doi: 10.1029/2002JD002190.
    [29] Randel W J, Park M. 2006. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS) [J]. J. Geophys. Res., 111: D12314, doi: 10.1029/2005JD006490. Randel W J, Park M, Emmons L, et al. 2010. Asian monsoon transport of Pollution to the stratosphere [J]. Science, 328: 611-613, doi: 10.1126/ science.1182274. Thompson A M. 1992. The oxidizing capacity of the Earth's atmosphere: Probable past and future changes [J]. Science, 256: 1157-1165, doi:10.1126/science.256.5060.1157.吴国雄, 刘新, 张琼, 等. 2002. 青藏高原抬升加热气候效应研究的新进展 [J]. 气候与环境研究, 7 (2): 184-201. Wu Guoxiong, Liu Xin, Zhang Qiong, et al. 2002. Progresses in the study of the climate impacts of the elevated heating over the Tibetan Plateau [J]. Climatic and Environmental Research (in Chinese), 7 (2): 184-201.
    [30] 徐祥德, 周明熠, 陈家宜, 等. 2001. 青藏高原地—气过程动力、热力结构综合物理图象 [J]. 中国科学 (D辑), 31 (5): 428-440. Xu Xiangde, Zhou Mingyu, Chen Jiayi, et al. 2002. A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau [J]. Science in China (Ser. D): Earth Sciences, 45 (7): 577-594, doi: 10.1360/02yd9060.
    [31] Zander R, Demoulin P, Ehhalt D H, et al. 1989. Secular increase of the total vertical column abundance of carbon monoxide above central Europe since 1950 [J]. J. Geophys. Res., 94: 11021-11028, doi: 10.1029/ JD094iD08p11021.
  • 加载中
计量
  • 文章访问数:  1312
  • HTML全文浏览量:  25
  • PDF下载量:  2229
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-09
  • 修回日期:  2015-07-14

目录

    /

    返回文章
    返回