高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WRF单柱模式中单参数方法对热带对流模拟能力的影响

梅海霞 沈新勇 王卫国 黄小梅

梅海霞, 沈新勇, 王卫国, 黄小梅. WRF单柱模式中单参数方法对热带对流模拟能力的影响[J]. 气候与环境研究, 2015, 20(6): 685-704. doi: 10.3878/j.issn.1006-9585.2015.15093
引用本文: 梅海霞, 沈新勇, 王卫国, 黄小梅. WRF单柱模式中单参数方法对热带对流模拟能力的影响[J]. 气候与环境研究, 2015, 20(6): 685-704. doi: 10.3878/j.issn.1006-9585.2015.15093
MEI Haixia, SHEN Xinyong, WANG Weiguo, HUANG Xiaomei. Effects of One-Moment Parameterization on the Capacity to SimulateTropical Convection Using a Single-Column Model[J]. Climatic and Environmental Research, 2015, 20(6): 685-704. doi: 10.3878/j.issn.1006-9585.2015.15093
Citation: MEI Haixia, SHEN Xinyong, WANG Weiguo, HUANG Xiaomei. Effects of One-Moment Parameterization on the Capacity to SimulateTropical Convection Using a Single-Column Model[J]. Climatic and Environmental Research, 2015, 20(6): 685-704. doi: 10.3878/j.issn.1006-9585.2015.15093

WRF单柱模式中单参数方法对热带对流模拟能力的影响

doi: 10.3878/j.issn.1006-9585.2015.15093
基金项目: 国家重点基础研究发展计划2013CB430103、2015CB453201,国家自然科学基金41375058、41530427,江苏省青年气象科研基金Q201407

Effects of One-Moment Parameterization on the Capacity to SimulateTropical Convection Using a Single-Column Model

  • 摘要: 利用耦合Milbrandt 2-mon (MY) 双参数微物理方案的WRF中的单柱模式,对TWP-ICE试验(Tropical Warm Pool International Cloud Experiment)期间的个例进行数值模拟和敏感性试验。通过与观测资料和云分辨率模式的模拟结果进行对比发现:MY方案默认的双参数版本和单参数版本均能够再现TWP-ICE期间的热带云系的总体宏观和微观特征。MY方案的双参数版本模拟的降水率的演变特征同观测十分吻合,冰相粒子的微观特征同观测事实较为一致。单参数默认版本的降水率、液态云的构成及冰相粒子微观特征方面同观测事实存在明显差距。然而实际业务应用中单参数方案由于计算量较小应用更为广泛,但模拟效果有待改善。为了使方案保持计算量较为合理的同时具有较好的模拟效果,参考双参数控制试验中的冰相物质的微观特征,尝试对单参数方案中冰相粒子的单参数方法进行改进。冰晶单参数改进试验中虽然对于冰晶数浓度采用两种不同的处理方法,但模拟效果均未明显改善。其中冰云总含量更加接近观测,且冰云构成发生显著变化,主要归因于冰晶有效半径的减小间接削弱了雪和霰的发展。云滴含量的异常增强导致液态水含量比观测偏高约一个量级,暖云异常增厚则与上升运动的增强直接相关。雨水含量明显增强及雨滴有效半径减小综合导致了降水率仅有微弱改善。雪的单参数改进试验中,雪的截距值增加及环境场过饱和条件改善促进了冰云的发展。通过适当调整雪的截距的经验诊断公式,雪的截距、液态水含量以及降水率均得到较好的改善;而指定雪截距为常数的处理方式使液态云更为偏厚,降水率演变细节同观测仍然差异显著。改进试验结果表明,单参数方案中采用适当的经验公式诊断雪的截距的处理方法对改善单参数方案的模拟能力具有一定的可行性。
  • [1] 敖翔宇, 任雪娟, 汤剑平, 等. 2011. 长江三角洲城市群对夏季日降水特征影响的模拟研究 [J]. 气象科学, 31(4): 451-459. Ao Xiangyu, Ren Xuejuan, Tang Jianping, et al. 2011. Simulation study of urbanization effects on summer daily precipitation over the Yangtze River Delta [J]. Journal of the Meteorological Sciences (in Chinese), 31(4): 451-459.
    [2] Brandes E A, Ikeda K, Zhang G F, et al. 2007. A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer [J]. Journal of Applied Meteorology and Climatology, 46 (5): 634-650, doi: 10.1175/JAM2489.1.
    [3] Bryan G H, Wyngaard J C, Fritsch J M. 2003. Resolution requirements for the simulation of deep moist convection [J]. Mon. Wea. Rev., 131 (10): 2394-2416, doi: 10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;
    [4] 陈锋, 董美莹, 冀春晓, 等. 2012. WRF模式对浙江2011年夏季降水和温度预报评估及其湿过程敏感性分析 [J]. 浙江气象, 33 (3): 3-12. Chen Feng, Dong Meiying, Ji Chunxiao, et al. 2012. Evaluation of forecasts of 2011 summer rainfall and temperature in Zhejiang and sensitivity analysis of wet processes [J]. Journal of Zhejiang Meteorology (in Chinese), 33 (3): 3-12.
    [5] Clothiaux E E, Ackerman T P, Mace G G, et al. 2000. Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites [J]. J. Appl. Meteor., 39 (5): 645-665, doi: 10.1175/1520-0450(2000)039<0645: ODOCHA>2.0.CO;2.
    [6] Cooper W A. 1986. Ice initiation in natural clouds [J]. Meteor. Monogr., 21 (43): 29-32, doi: 10.1175/0065-9401-21.43.29.
    [7] Dawson D T II, Xue M, Milbrandt J A, et al. 2010. Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms [J]. Mon. Wea. Rev., 138 (4): 1152-1171, doi: 10.1175/2009MWR2956.1.
    [8] 董昊, 徐海明, 罗亚丽. 2012. 云凝结核浓度对WRF模式模拟飑线降水的影响:不同云微物理参数化方案的对比研究 [J]. 大气科学, 36 (1): 145-169. Dong Hao, Xu Haiming, Luo Yali. 2012. Effects of cloud condensation nuclei concentration on precipitation in convection permitting simulations of a squall line using WRF model: Sensitivity to cloud microphysical schemes [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (1): 145-169.
    [9] Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model [J]. J. Atmos. Sci., 46 (20): 3077-3107.
    [10] Ghan S, Randall D, Xu K M, et al. 2000. A comparison of single column simulations of summertime midlatitude continental convection [J]. J. Geophys. Res., 105 (D2): 2091-2124, doi: 10.1029/1999JD900971.
    [11] Gilmore M S, Straka J M, Rasmussen E N. 2004. Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme [J]. Mon. Wea. Rev., 132 (11): 2610-2627, doi: 10.1175/MWR2810.1.
    [12] 郭妙, 金之雁, 周斌. 2012. 基于通用图形处理器的GRAPES长波辐射并行方案 [J]. 应用气象学报, 23 (3): 348-354. Guo Miao, Jin Zhiyan, Zhou Bin. 2012. GPPU accelerated massive parallel design of long wave radiation process in GRAPES-Global model [J]. Journal of Applied Meteorological Science (in Chinese), 23 (3): 348-354.
    [13] Heymsfield A J, Protat A, Bouniol D, et al. 2008. Testing IWC retrieval methods using radar and ancillary measurements with in situ data [J]. Journal of Applied Meteorology and Climatology, 47 (1): 135-163, doi: 10.1175/2007JAMC1606.1.
    [14] Houze R A Jr, Hobbs P V, Herzegh P H, et al. 1979. Size distributions of precipitation particles in frontal clouds [J]. J. Atmos. Sci., 36 (1): 156-162, doi: 10.1175/1520-0469(1979)036<0156:SDOPPI>2.0.CO;2.
    [15] James O Pinto. 1998. Autumnal mixed-phase cloudy boundary layers in the Arctic [J]. J. Atmos. Sci., 55: 2016-2038. doi: http://dx.doi.org/ 10.1175/1520-0469(1998)055<2016:AMPCBL>2.0.CO;2
    [16] 金莲姬. 2007. 热带云砧卷云微观特征及其对环境变化的响应 [D]. 南京信息工程大学博士学位论文, 151pp. Jin Lianji. 2007. On the microphysical properties of tropical anvil cirrus and its response to changes in environmental conditions [D]. Ph. D. dissertation (in Chinese), Nanjing University of information Science and Technology, 151pp.
    [17] Jung Y, Xue M, Zhang G F. 2010. Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme [J]. J. Appl. Meteor., 49 (1): 146-163, doi: 10.1175/ 2009JAMC2178.1.
    [18] Jung Y, Xue M, Tong M J. 2012. Ensemble Kalman Filter analyses of the 29-30 May 2004 Oklahoma tornadic thunderstorm using one-and two-moment bulk microphysics schemes, with verification against polarimetric radar data [J]. Mon. Wea. Rev., 140 (5): 1457-1475, doi: 10.1175/MWR-D-11-00032.1.
    [19] Lean H W, Clark P A, Dixon M, et al. 2008. Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom [J]. Mon. Wea. Rev., 136 (9): 3408-3424, doi: 10.1175/2008MWR2332.1.
    [20] 李香淑. 2007. 南海季风试验区海洋对流结构与TRMM卫星反演研究 [D]. 南京信息工程大学硕士学位论文, 60pp. Li Xiangshu. 2007. A study on the ocean convection structure and TRMM retrieved data analyses over the SCSMEX [D]. M. S. thesis (in Chinese), Nanjing University of Information Science and Technology, 60pp.
    [21] Liao L, Sassen K. 1994. Investigation of relationships between Ka-band radar reflectivity and ice and liquid water contents [J]. Atmospheric Research, 34 (1-4): 231-248, doi: 10.1016/0169-8095(94)90094-9.
    [22] Lim K S S, Hong S Y. 2010. Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models [J]. Mon. Wea. Rev., 138 (5): 1587-1612, doi: 10.1175/2009MWR2968.1.
    [23] Lin Y L, Donner L J, Petch J, et al. 2012. TWP-ICE global atmospheric model intercomparison: Convection responsiveness and resolution impact [J]. J. Geophys. Res., 117 (D9): D09111, doi: 10.1029/2011JD017018.
    [24] Liu C L, Illingworth A J. 2000. Toward more accurate retrievals of ice water content from radar measurements of clouds [J]. J. Appl. Meteor., 39 (7): 1130-1146, doi: 10.1175/1520-0450(2000)039<1130: TMAROI> 2.0.CO;2.
    [25] Luo Y L, Xu K M, Morrison H, et al. 2008a. Arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM observations and sensitivity to microphysics parameterizations [J]. J. Atmos. Sci., 65 (4): 1285-1303, doi: 10.1175/2007JAS2467.1.
    [26] Luo Y L, Xu K M, Morrison H, et al. 2008b. Multi-layer arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM observations and sensitivity experiments [J]. J. Geophys. Res., 113 (D12): D12208, doi: 10.1029/2007JD009563.
    [27] 马国忠, 银燕, 王秋京. 2010. 东北地区春季冷锋云系降水个例数值模拟及机理研究 [J]. 黑龙江气象, 27 (4): 4-8. Ma Guozhong, Yin Yan, Wang Qiujing. 2010. Mechanism and numerical simulating study of the cold front precipitation in Northeast China [J]. Heilongjiang Meteorology (in Chinese), 27 (4): 4-8.
    [28] 马严枝, 陆昌根, 高守亭. 2012. 8. 19华北暴雨模拟中微物理方案的对比试验 [J]. 大气科学, 36 (4): 835-850. Ma Yanzhi, Lu Changgen, Gao Shouting. 2012. The effects of different microphysical schemes in WRF on a heavy rainfall in North China during 18-19 August 2010 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (4): 835-850, doi: 10.3878/j.issn.1006-9895.2011.11159.
    [29] 马占山, 刘奇俊, 秦琰琰, 等. 2009. 利用TRMM卫星资料对人工增雨云系模式云微观场预报能力的检验 [J]. 气象学报, 67 (2): 260-271. Ma Zhanshan, Liu Qijun, Qin Yanyan, et al. 2009. Verification of forecasting efficiency to cloud microphysical characters of mesoscale numerical model for artificial rainfall enhancement by using TRMM satellite data [J]. Acta Meteorologica Sinica (in Chinese), 67 (2): 260-271.
    [30] Mather J H, McFarlane S A, Miller M A, et al. 2007. Cloud properties and associated radiative heating rates in the tropical western Pacific [J]. J. Geophys. Res., 112 (D5): D05201, doi: 10.1029/2006JD007555.
    [31] May P T, Jakob C, Mather J H, et al. 2008. Field research: Characterizing oceanic convective cloud systems [J]. Bull. Amer. Meteor. Soc., 89 (2): 153-155, doi: 10.1175/BAMS-89-2-153.
    [32] McFarquhar G M, Black R A. 2004. Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes [J]. J. Atmos. Sci., 61 (4): 422-439, doi: 10.1175/1520-0469(2004)061<0422:OOPSAP>2.0.CO;2.
    [33] 梅海霞, 沈新勇, 王卫国, 等. 2015. 双参数微物理方案在WRF单柱模式中的模拟检验和对比研究 [J]. 高原气象, 34 (4): 890-909. Mei Haixia, Shen Xinyong, Wang Weiguo, et al. 2015. Evaluation and comparison of two double-moment bulk microphysics schemes using WRF single-column model [J]. Plateau Meteorology (in Chinese), 34 (4): 890-909, doi: 10.7522/j.issn.1000-0534.2014.00113.
    [34] Milbrandt J A, Yau M K. 2005a. A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter [J]. J. Atmos. Sci., 62 (9): 3051-3064, doi: 10.1175/JAS3534.1.
    [35] Milbrandt J A, Yau M K. 2005b. A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description [J]. J. Atmos. Sci., 62 (9): 3065-3081, doi:10.1175/ JAS3535.1.
    [36] Milbrandt J A, Yau M K. 2006a. A multimoment bulk microphysics parameterization. Part III: Control simulation of a hailstorm [J]. J. Atmos. Sci., 63 (12): 3114-3136, doi: 10.1175/JAS3816.1.
    [37] Milbrandt J A, Yau M K. 2006b. A multimoment bulk microphysics parameterization. Part IV: Sensitivity experiments [J]. J. Atmos. Sci., 63 (12): 3137-3159, doi: 10.1175/JAS3817.1.
    [38] Morrison H, Curry J A, Shupe M D, et al. 2005. A new double-moment microphysics parameterization for application in cloud and climate models. Part II: Single-column modeling of Arctic clouds [J]. J. Atmos. Sci., 62 (6): 1678-1693, doi: 10.1175/JAS3447.1.
    [39] Morrison H, Pinto J O. 2005. Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme [J]. J. Atmos. Sci., 62 (10): 3683-3704, doi: 10.1175/JAS3564.1.
    [40] Morrison H, Pinto J O. 2006. Intercomparison of bulk cloud microphysics schemes in mesoscale simulations of springtime Arctic mixed-phase stratiform clouds [J]. Mon. Wea. Rev., 134 (7): 1880-1900, doi: 10.1175/MWR3154.1.
    [41] Morrison H, Pinto J O, Curry J A, et al. 2008. Sensitivity of modeled arctic mixed-phase stratocumulus to cloud condensation and ice nuclei over regionally varying surface conditions [J]. J. Geophys. Res., 113 (D5): D05203, doi: 10.1029/2007JD008729.
    [42] Morrison H, Thompson G, Tatarskii V. 2009. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes [J]. Mon. Wea. Rev., 137 (3): 991-1007, doi: 10.1175/2008MWR2556.1.
    [43] Narita M, Ohmori S. 2007. Improving precipitation forecasts by the operational nonhydrostatic mesoscale model with the Kain-Fritsch convective parameterization and cloud microphysics [C]// Preprints, 12th Conference on Mesoscale Process. Waterville Valley, NH, Amer. Meteorol. Soc., Boston, CD-ROM, 3.7.
    [44] Protat A, Delanoë J, Bouniol D, et al. 2007. Evaluation of ice water content retrievals from cloud radar reflectivity and temperature using a large airborne in situ microphysical database [J]. Journal of Applied Meteorology and Climatology, 46 (5): 557-572, doi: 10.1175/JAM2488.1.
    [45] 冉令坤, 高守亭, 洪延超. 2008. 冰相粒子质量和半径的改变对降水过程影响的数值模拟研究 [C]// 第十五届全国云降水与人工影响天气科学会议论文集(Ⅰ). 北京: 气象出版社, 1106pp. Ran Lingkun, Gao Shouting, Hong Yanchao. 2008. Numerical simulating study of effects on rainfall of mixing ratio and radius of ice crystals [C]// Proceedings of Conference on 15th Processes in Cloud Physics, Precipitation, and Modification (Ⅰ) (in Chinese). Beijing: China Meteorological Press 1106pp.
    [46] Reisner J, Rasmussen R M, Bruintjes R T. 1998. Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model [J]. Quart. J. Roy. Meteor. Soc., 124 (548): 1071-1107, doi: 10.1002/qj.49712454804.
    [47] Seo E K, Liu G S. 2005. Retrievals of cloud ice water path by combining ground cloud radar and satellite high-frequency microwave measurements near the ARM SGP site [J]. J. Geophys. Res., 110 (D14): D14203, doi: 10.1029/2004JD005727.
    [48] Seo E K, Liu G S. 2006. Determination of 3D cloud ice water contents by combining multiple data sources from satellite, ground radar, and a numerical model [J]. Journal of Applied Meteorology and Climatology, 45 (11): 1494-1504, doi: 10.1175/JAM2430.1.
    [49] 沈新勇, 梅海霞, 王卫国, 等. 2015. 双参数微物理方案的冰相过程模拟及冰核数浓度的影响试验 [J]. 大气科学, 39 (1): 83-99. Shen Xinyong, Mei Haixia, Wang Weiguo, et al. 2015. Numerical simulation of ice-phase processes using a double-moment microphysical scheme and a sensitivity test of ice nuclei concentration [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(1): 83-99, doi:10.3878/j.issn.1006-9895.1405. 13310.
    [50] Solomon A, Morrison H, Persson O, et al. 2009. Investigation of microphysical parameterizations of snow and ice in Arctic clouds during M-PACE through model-observation comparisons [J]. Mon. Wea. Rev., 137 (9): 3110-3128, doi: 10.1175/2009MWR2688.1.
    [51] Song X L, Zhang G J. 2011. Microphysics parameterization for convective clouds in a global climate model: Description and single-column model tests [J]. J. Geophys. Res., 116 (D2): D02201, doi:10.1029/ 2010JD014833.
    [52] Stephens G L. 2005. Cloud feedbacks in the climate system: A critical review [J]. J. Climate, 18 (2): 237-273, doi: 10.1175/JCLI-3243.1.
    [53] Stith J L, Haggerty J A, Heymsfield A, et al. 2004. Microphysical characteristics of tropical updrafts in clean conditions [J]. J. Appl. Meteor., 43(5): 779-794, doi: 10.1175/2104.1.
    [54] 孙建华, 赵思雄. 2003. 华北地区“12·7”降雪过程的数值模拟研究 [J]. 气候与环境研究, 8(4): 387-401. Sun Jianhua, Zhao Sixiong. 2003. A numerical simulation of snowfall in North China on 7 December 2001 [J]. Climatic and Environmental Research (in Chinese), 8 (4): 387-401.
    [55] Varble A, Fridlind A M, Zipser E J, et al. 2011. Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure [J]. J. Geophys. Res., 116 (D12): D12206, doi: 10.1029/2010JD015180.
    [56] Wang W G, Liu X H, Xie S C, et al. 2009. Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using Tropical Warm Pool-International Cloud Experiment data [J]. J. Geophys. Res., 114 (D14): D14107, doi: 10.1029/2008JD011220.
    [57] 王秀娟, 李培仁, 赵震, 等. 2013. 一次层状云系结构和降水机制的观测与数值模拟 [J]. 气候与环境研究, 18 (3): 311-328. Wang Xiujuan, Li Peiren, Zhao Zhen, et al. 2013. A case study of stratiform cloud structure and precipitation mechanism based on observation and simulation [J]. Climatic and Environmental Research (in Chinese), 18 (3): 311-328, doi: 10. 3878/j.issn.1006-9585.2012.11061.
    [58] Wapler K, May P T, Jakob C, et al. 2010. Cloud-system-resolving model simulations of tropical cloud systems observed during the Tropical Warm Pool-International Cloud Experiment [J]. Mon. Wea. Rev., 138 (1): 55.
    [59] 肖辉, 银燕. 2011. 污染气溶胶对山西一次降水过程影响的数值模拟 [J]. 大气科学, 35 (2): 235-246. Xiao Hui, Yin Yan. 2011. A numerical study of polluted aerosol effects on precipitation in Shanxi Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35 (2): 235-246.
    [60] Xie S C, Zhang M H, Boyle J S, et al. 2004. Impact of a revised convective triggering mechanism on Community Atmosphere Model, version 2, simulations: Results from short-range weather forecasts [J]. J. Geophys. Res., 109 (D14), doi: 10.1029/2004JD004692.
    [61] Xie S C, Boyle J, Klein S A, et al. 2008. Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE [J]. J. Geophys. Res., 113 (D4), doi: 10.1029/2007JD009225.
    [62] Xie S C, Hume T, Jakob C, et al. 2010. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE [J]. J. Climate, 23 (1): 57-79, doi: 10.1175/2009JCLI3071.1.
    [63] 许凤雯, 崔晓鹏, 许小峰, 等. 2011. 2007年7月江淮流域降水过程云分辨尺度模拟研究Ⅱ——降水过程模拟诊断 [J]. 热带气象学报, 27 (3): 365-372. Xu Fengwen, Cui Xiaopeng, Xu Xiaofeng, et al. 2011. A cloud-resolving modeling study of the surface rainfall processes in the Jiang-Huai Valley during July 2007 Ⅱ—Diagnostic analysis of the simulated surface rainfall processes [J]. Journal of Tropical Meteorology (in Chinese), 27 (3): 365-372.
    [64] 许焕斌, 段英. 1999. 云粒子谱演化研究中的一些问题 [J]. 气象学报, 57(4): 450-460. Xu Huanbin, Duan Ying. 1999. Some questions in studying the evolution of size distribution spectaum of hydrometeor particles [J]. Acta Meteorologica Sinica (in Chinese), 57 (4): 450-460.
    [65] 晏晓英, 药明, 陈长胜. 2010. 2008年汛期两种模式降水预报的检验分析 [J]. 吉林气象, (2): 35-38. Yan Xiaoying, Yao Ming, Chen Changsheng. 2010. Test and analysis of rainfall forecasts by two models in 2008 rainy season [J]. Journal of Jilin Meteorology (in Chinese), (2): 35-38.
    [66] 尹金方. 2013. 东亚区域云和降水微物理特征及云微物理参数化方案构建 [D]. 浙江大学博士学位论文, 161pp. Yin Jinfang. 2013. The study on observation and prarmeterization of cloud-precipitation microphysical properties over East Asia [D]. Ph.D.dissertation (in Chinese), Zhejiang University, 161pp.
    [67] 于翡, 姚展予. 2009. 一次积层混合云降水实例的数值模拟分析 [J]. 气象, 35 (12): 3-11. Yu Fei, Yao Zhanyu. 2009. Numerical study on the complex of the stratiform and embedded convective cloud precipitation: A case study [J]. Meteorological Monthly (in Chinese), 35 (12): 3-11.
    [68] 张大林. 1998. 各种非绝热物理过程在中尺度模式中的作用 [J]. 大气科学, 22(4): 548-561. Zhang Dalin. 1998. Roles of various diabatic physical processes in mesoscale models [J]. Chinese Journal Atmospheric Science (in Chinese), 22 (4): 548-561, doi:10.3878/j.issn.1006-9895. 1998.04.16.
    [69] Zhang M H, Lin J L, Cederwall R T, et al. 2001. Objective analysis of ARM IOP data: Method and sensitivity [J]. Mon. Wea. Rev., 129 (2): 295-311, doi: 10.1175/1520-0493(2001)129<0295:OAOAID>2.0.CO;2.
    [70] Zhang M H, Lin J L. 1997. Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements [J]. J. Atmos. Sci., 54 (11): 1503-1524, doi: 10.1175/1520-0469(1997)054<1503: CVAOSD>2.0.CO;2.
    [71] 赵思雄, 曾庆存. 2005. 东亚强寒潮——冷涌越过赤道并引发南半球热带气旋和强降水的个例研究 [J]. 气候与环境研究, 10 (3): 507-525. Zhao Sixiong, Zeng Qingcun. 2005. A study of East Asia strong cold wave—surge crossing Equator and influencing the development of tropical cyclone and heavy rainfall in the Southern Hemisphere [J]. Climatic and Environmental Research (in Chinese), 10 (3): 507-525.
    [72] 郑晓辉, 徐国强, 魏荣庆. 2013. GRAPES新云量计算方案的引进和影响试验 [J]. 气象, 39 (1): 57-66. Zhen Xiaohui, Xu Guoqiang, Wei Rongqing. 2013. Introducing and influence testing of the new cloud fraction scheme in the GRAPES [J]. Meteorological Monthly (in Chinese), 39 (1): 57-66.
    [73] 周嘉陵, 王文兰, 曾明剑, 等. 2011. WRF快速更新循环同化预报系统 (WRF_RUC) 在江苏省气象台的搭建与应用 [C]// 第 28 届中国气象学会年会, 721pp. Zhou Jialing, Wang Wenlan, Zeng Mingjian, et al. 2011. Construction and application in Jiangsu meteorological observatory of WRF Rapid Update Cycle [C]// 28th Chinese Meteorological Society Annual Meeting (in Chinese), 721pp.
  • 加载中
计量
  • 文章访问数:  1538
  • HTML全文浏览量:  15
  • PDF下载量:  2605
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-18
  • 修回日期:  2015-09-02

目录

    /

    返回文章
    返回