高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NAQPMS+APM模式对北京冬季细粒子谱分布演变特征的数值模拟

陈学舜 王自发 李杰 余方群 胡敏

陈学舜, 王自发, 李杰, 余方群, 胡敏. NAQPMS+APM模式对北京冬季细粒子谱分布演变特征的数值模拟[J]. 气候与环境研究, 2015, 20(6): 611-619. doi: 10.3878/j.issn.1006-9585.2015.15095
引用本文: 陈学舜, 王自发, 李杰, 余方群, 胡敏. NAQPMS+APM模式对北京冬季细粒子谱分布演变特征的数值模拟[J]. 气候与环境研究, 2015, 20(6): 611-619. doi: 10.3878/j.issn.1006-9585.2015.15095
CHEN Xueshun, WANG Zifa, LI Jie, YU Fangqun, HU Min. Simulation of Particle Number Size Distribution in Beijing in Winter Using NAQPMS+APM Model[J]. Climatic and Environmental Research, 2015, 20(6): 611-619. doi: 10.3878/j.issn.1006-9585.2015.15095
Citation: CHEN Xueshun, WANG Zifa, LI Jie, YU Fangqun, HU Min. Simulation of Particle Number Size Distribution in Beijing in Winter Using NAQPMS+APM Model[J]. Climatic and Environmental Research, 2015, 20(6): 611-619. doi: 10.3878/j.issn.1006-9585.2015.15095

NAQPMS+APM模式对北京冬季细粒子谱分布演变特征的数值模拟

doi: 10.3878/j.issn.1006-9585.2015.15095
基金项目: 中国科学院战略性先导科技专项XDB05030201,国家自然科学基金41225019

Simulation of Particle Number Size Distribution in Beijing in Winter Using NAQPMS+APM Model

  • 摘要: 利用包含详细微物理动力学机制的NAQPMS+APM (Nested Air Quality Prediction Modeling System with Advanced Particle Microphysics) 模式,对北京城市大气2006年1月15日至2月13日期间的粒子数浓度谱分布进行了模拟,模式模拟结果合理,能够很好地再现北京城市大气细粒子的数浓度谱分布演变特征。分析表明,北京冬季大气新粒子形成事件频发,核化作用使核模态粒子数浓度急剧升高;污染累积时,积聚模态粒子数浓度显著增大,而核模态粒子数浓度很小,粒子谱分布向大粒子端移动;重污染期间,粒子微物理混合作用强烈,二次成分在一次粒子上的附着使一次粒子粒径显著增大,二次成分可使一次粒子粒径增大50%以上,积聚模态的二次粒子与一次粒子共同促进了污染的形成。在北京及其近周边区域,北京南部和河北南部一次粒子数量多,占据主导地位,而在河北北部二次粒子则占主导地位。
  • [1] Chen X S, Wang Z F, Li J, et al. 2014. Development of a regional chemical transport model with size-resolved aerosol microphysics and its application on aerosol number concentration simulation over China [J]. SOLA, 10: 83-87, doi: 10.2151/sola.2014-017.
    [2] Dentener F, Kinne S, Bond T, et al. 2006. Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom [J]. Atmospheric Chemistry and Physics, 6 (12): 4321-4344, doi: 10.5194/acp-6-4321-2006.
    [3] Delfino R J, Sioutas C, Malik S. 2005. Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health [J]. Environmental Health Perspectives, 113 (8): 934-946, doi: 10.1289/ ehp.7938.
    [4] Donaldson K, Li X Y, MacNee W, et al. 1998. Ultrafine (Nanometre) particle mediated lung injury [J]. Journal of Aerosol Science, 29 (5-6): 553-560, doi: 10.1016/S0021-8502(97)00464-3.
    [5] Donaldson K, Brown D, Clouter A, et al. 2002. The pulmonary toxicology of ultrafine particles [J]. Journal of Aerosol Medicine, 15 (2): 213-220, doi: 10.1089/089426802320282338.
    [6] Kurokawa J, Ohara T, Morikawa T, et al. 2013. Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: Regional Emission inventory in ASia (REAS) version 2 [J]. Atmospheric Chemistry and Physics, 13 (21): 11019-11058, doi: 10.5194/ acp-13-11019-2013.
    [7] Li J, Wang Z, Wang X, et al. 2011. Impacts of aerosols on summertime tropospheric photolysis frequencies and photochemistry over Central Eastern China [J]. Atmos. Environ., 45 (10): 1817-1829, doi: 10.1016/ j.atmosenv.2011.01.016.
    [8] Li J, Wang Z, Zhuang G, et al. 2012. Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: A model case study of a super-duststorm in March 2010 [J]. Atmospheric Chemistry and Physics, 12 (16): 7591-7607, doi: 10.5194/acp-12-7591-2012.
    [9] Ma J Z, Xu X B, Zhao C S, et al. 2012. A review of atmospheric chemistry research in China: Photochemical smog, haze pollution, and gas-aerosol interactions [J]. Advances in Atmospheric Sciences, 29 (5): 1006-1026, doi: 10.1007/s00376-012-1188-7.
    [10] Spracklen D V, Carslaw K S, Kulmala M, et al. 2008. Contribution of particle formation to global cloud condensation nuclei concentrations [J].Geophys. Res. Lett., 35 (6): L06808, doi: 10.1029/2007GL033038.
    [11] Turco R P, Hamill P, Toon O B, et al. 1979. A one-dimensional model describing aerosol formation and evolution in the stratosphere: Part I. Physical processes and mathematical analogs [J]. J. Atmos. Sci., 36 (4): 699-717, doi: 10.1175/1520-0469(1979)036<0699:AODMDA>2.0.CO;2.
    [12] Wang Z, Maeda T, Hayashi M, et al. 2001. A nested air quality prediction modeling system for urban and regional scales: Application for high-ozone episode in Taiwan [J]. Water, Air, and Soil Pollution, 130 (1-4): 391-396, doi: 10.1023/A:1013833217916.
    [13] Wang Z F, Akimoto H, Uno I. 2002. Neutralization of soil aerosol and its impact on the distribution of acid rain over east Asia: Observations and model results [J]. J. Geophys. Res., 107 (D19): ACH 6-1-ACH 6-12, doi: 10.1029/2001JD001040.
    [14] Wang Z F, Li J, Wang X Q, et al. 2006. Modeling of regional high ozone episode observed at two mountain sites (Mt. Tai and Huang) in East China [J]. Journal of Atmospheric Chemistry, 55 (3): 253-272, doi: 10.1007/s10874-006-9038-6.
    [15] Wehner B, Wiedensohler A, Tuch T M, et al. 2004. Variability of the aerosol number size distribution in Beijing, China: New particle formation, dust storms, and high continental background [J]. Geophys. Res. Lett., 31 (22): L22108, doi: 10.1029/2004GL021596.
    [16] Wu Z J, Hu M, Liu S, et al. 2007. New particle formation in Beijing, China: Statistical analysis of a 1-year data set [J]. J. Geophys. Res., 112 (D9): D09209, doi: 10.1029/2006JD007406.
    [17] Wu Z J, Hu M, Yue D L, et al. 2011. Evolution of particle number size distribution in an urban atmosphere during episodes of heavy pollution and new particle formation [J]. Science China Earth Sciences, 54 (11): 1772-1778, doi: 10.1007/s11430-011-4227-9.
    [18] Yu F Q, Turco R P. 1997. The role of ions in the formation and evolution of particles in aircraft plumes [J]. Geophys. Res. Lett., 24 (15): 1927-1930, doi: 10.1029/97GL01822.
    [19] Yu F, Turco R P. 2008. Case studies of particle formation events observed in boreal forests: Implications for nucleation mechanisms [J]. Atmospheric Chemistry and Physics, 8 (20): 6085-102, doi: 10.5194/acp-8-6085-2008.
    [20] Yu F, Luo G. 2009. Simulation of particle size distribution with a global aerosol model: Contribution of nucleation to aerosol and CCN number concentrations [J]. Atmospheric Chemistry and Physics, 9 (20): 7691-7710, doi: 10.5194/acp-9-7691-2009.
    [21] 王喜全, 王自发, 龚晏邦, 等. 2008. 北京城区热岛环流对山地—平原风的调节作用 [J]. 气候与环境研究, 13 (5): 639-644. Wang Xiquan, Wang Zifa, Gong Yanbang, et al. 2008. Modulation of urban heat island circulation on mountain-plain wind in the Beijing area [J]. Climatic and Environmental Research (in Chinese), 13 (5): 639-644.
    [22] 王自发, 谢付莹, 王喜全, 等. 2006. 嵌套网格空气质量预报模式系统的发展与应用 [J]. 大气科学, 30 (5): 778-790. Wang Zifa, Xie Fuying, Wang Xiquan, et al. 2006. Development and application of nested air quality prediction modeling system [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30 (5): 778-790.
  • 加载中
计量
  • 文章访问数:  1932
  • HTML全文浏览量:  22
  • PDF下载量:  2644
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-20
  • 修回日期:  2015-07-14

目录

    /

    返回文章
    返回