Total Ozone Column Derived from the Ground-Based and Space-Borne Instruments
-
摘要: 本文选取多个臭氧总量观测站点,采用“三重制约法”分别对下列3组仪器观测臭氧总量数据进行统计分析,解算出不同观测资料的误差标准差,进而对比研究各种仪器的精度特征:1)1996~2003年期间地基WOUDC(World Ozone and Ultraviolet Radiation Data Centre)观测网络仪器(包括Brewer、Dobson和Filter臭氧测量仪)与星载TOMS(Total Ozone Mapping Spectrometer)和GOME(The Global Ozone Monitoring Experiment)仪器;2)2004~2013年期间WOUDC与星载OMI(ozone monitoring instrument)和SCIAMACHY(scanning imaging absorption spectrometer for atmospheric chartography)仪器;3)2004~2013年期间地基SAOZ(Système D’Analyse par Observations Zénithales)与星载OMI和SCIAMACHY仪器。结果表明,1996~2003年期间TOMS V8和GOME观测精度相当,分别为7.6±2.8 DU/46(其中,7.6±2.8 DU为所分析站点观测资料的平均精度及其标准差,46为站点数目)和7.6±1.5 DU/46。TOMS V8观测精度优于TOMS V7(8.5±3.0 DU/46),验证了前者对后者有所改进。2004~2013年期间OMI和SCIAMACHY在WOUDC地基站点观测精度接近,分别为6.6±1.4 DU/21和6.0±1.6 DU/21。SAOZ地基仪器精度为8.4±3.6 DU/8。对于3类WOUDC地基仪器,Brewer站点观测资料的平均精度最优(7.9±3.3 DU/12),Dobson次之(8.7±2.3 DU/19),Filter最差(14.7±4.0 DU/15)。相比于卫星,3种地面仪器观测平均精度较差(10.5±4.3 DU/46),这主要是由于Filter精度较差引起。中国境内的瓦里关(Brewer)、香河(Dobson)和昆明(Dobson)3个地基站点仪器观测精度均较优,分别为7.8 DU、6.7 DU和6.6 DU。尽管不同站点之间存在一定差异,但整体来说,地基与卫星仪器在中国境内3个站点观测臭氧总量吻合较好。Abstract: The collocated total ozone columns derived from three groups of instruments were analyzed at multiple surface stations in this study. The three groups of instruments are:1) Ground-based WOUDC (World Ozone and Ultraviolet Radiation Data Centre) network instruments (including Brewer, Dobson, and Filter), space-borne TOMS (Total Ozone Mapping Spectrophotometer) and GOME (The Global Ozone Monitoring Experiment) between 1996 and 2003; 2) WOUDC instrument, space-borne OMI (ozone monitoring instrument) and SCIAMACHY (scanning imaging absorption spectrometer for atmospheric chartography) from 2004 to 2013; 3) ground-based SAOZ (Système D'Analyse par Observations Zénithales), space-borne OMI and SCIAMACHY during 2004-2013. The triple control method was adopted to calculate standard deviations of errors of different kinds of datasets and a comparison of their precisions was conducted. Results show that the precisions of TOMS V8 and GOME, which were 7.6±2.8 DU/46 (7.6±2.8 DU denoted the mean precision and its standard deviation of the ground sites analyzed; 46 represented the number of the sites) and 7.6±1.5 DU/46, respectively, agreed well during 1996-2003. The precision of TOMS V8 was better than that of TOMS V7 (8.5±3.0 DU/46) and the improvement was confirmed in this study. The precisions of OMI and SCIAMACHY, which were 6.6±1.4 DU/21 and 6.0±1.6 DU/21, respectively over WOUDC sites during 2004-2013, were close to each other. The precision of SAOZ was 8.4±3.6 DU/8. In terms of the WOUDC ground-based instruments, the average precision of Brewer was the best (7.9±3.3 DU/12), followed by that of Dobson (8.7±2.3 DU/19), and the worst was that of Filter (14.7±4.0 DU/15). The mean precision of the above three kinds of ground-based measurements (10.5±4.3 DU/46) was worse than that from the space-born instruments due to the application of the Filter-type instrument. With regard to only the ground-based instruments in China, their precisions were excellent at Waliguan (Brewer), Xianghe (Dobson), and Kunming (Dobson) sites, which were 7.8 DU, 6.7 DU, and 6.6 DU, respectively. Although there existed certain differences at Waliguan, Xianghe, and Kunming sites, the total ozone column obtained by the ground-based and space-borne instruments generally agreed well over these three sites.
-
Key words:
- Total ozone column /
- Surface /
- Satellite /
- Precision /
- Triple control method
-
图 3 (a)WOUDC、TOMS和GOME仪器在46个地面站点匹配数据的样本组数及地基(b)Brewer、(c)Dobson和(d)Filter观测资料的精度(单位:DU)分布
Figure 3. (a) The sample number of the collocated total ozone column derived from the WOUDC instruments, TOMS, and GOME at 46 stations and the precisions (units: DU) of the data collected by the ground-based (b) Brewer, (c) Dobson, and (d) Filter
图 5 (a)地基WOUDC、OMI和SCIAMACHY在21个站点匹配数据的样本组数;地基(b)WOUDC、(c)OMI和(d)SCIAMACHY的精度(单位:DU)分布
Figure 5. (a) The sample number of the collocated total ozone column derived from the ground-based WOUDC, OMI, and SCIAMACHY at 21 stations and the precisions (units: DU) of the data collected by the ground-based (b) WOUDC, (c) OMI, and (d) SCIAMACHY
图 7 地基(黑线)与星载TOMS(蓝线)和GOME(红线)在中国境内的(a)瓦里关(Brewer)、(b)香河(Dobson)和(c)昆明(Dobson)站点观测臭氧总量的年际变化及其标准差。圆点的色标为各个年份内3种仪器匹配的观测样本组数
Figure 7. Annual variations and their standard errors of the total ozone column derived from the ground-based instrument (black line), TOMS (blue line), and GOME (red line) at (a) Waliguan (Brewer), (b) Xianghe (Dobson), and (c) Kunming (Dobson) sites in China. The color of the dots denotes the sample number of the collocated total ozone column obtained from the three kinds of instruments in a certain year
表 1 WOUDC 46个地基观测站的站号、站名、地理位置、海拔高度和观测仪器
Table 1. The station number, name, geographical position, height above the sea level and the instrument type of the 46 WOUDC ground-based stations
站号 站名 地理位置 海拔/m 仪器 7 日本Kagoshima (31.63°N, 130.60°E) 31 Dobson 12* 日本Sapporo (43.05°N, 141.33°E) 19 Dobson 14* 日本Tateno (36.05°N, 140.13°E) 31 Dobson 16 俄罗斯Vladivostok (43.12°N, 131.90°E) 80 Filter 19* 美国Bismarck (46.77°N, 00.75°W) 511 Dobson 35* 瑞士Arosa (46.77°N, 9.67°E) 1840 Brewer 36 英国Camborne (50.22°N, 5.32°W) 88 Brewer 40 法国Haute Provence (43.94°N, 5.71°E) 684 Dobson 42 俄罗斯St. Petersburg (59.97°N, 30.30°E) 74 Filter 43* 英国Lerwick (60.13°N, 1.18°W) 80 Dobson 50 德国Potsdam (52.37°N, 13.08°E) 89 Brewer 53* 比利时Uccle/Brussels (50.80°N, 4.35°E) 100 Dobson 65 加拿大Toronto (43.78°N, 79.47°W) 198 Brewer 67* 美国Boulder (40.02°N, 05.25°W) 1390 Dobson 68 波兰Belsk (51.84°N, 20.79°E) 180 Dobson 85 俄罗斯Irkutsk (52.27°N, 04.35°E) 467 Filter 96* 捷克Hradec Kralove (50.18°N, 15.83°E) 285 Dobson 99* 德国Hohenpeissenberg (47.80°N, 11.02°E) 975 Brewer 100* 匈牙利Budapest/K-Puszta (47.43°N, 19.18°E) 139 Dobson 106* 美国Nashville (36.25°N, 86.57°W) 182 Dobson 107* 美国Wallops Island (37.93°N, 75.48°W) 13 Dobson 112 俄罗斯Bolshaya Elan (46.92°N, 142.73°E) 22 Filter 116 俄罗斯Moscow (55.75°N, 37.57°E) 187 Filter 118 俄罗斯Nagaevo (59.58°N, 150.78°E) 118 Filter 120 俄罗斯Omsk (54.93°N, 73.40°E) 119 Filter 121 拉托维亚Riga (57.32°N, 24.42°E) 7 Filter 122 俄罗斯Sverdlovsk (56.80°N, 60.63°E) 290 Filter 130 俄罗斯Petropavlosk-Kamchatsky (52.97°N, 158.75°E) 78 Filter 143 俄罗斯Krasnoyarsk (56.00°N, 92.88°E) 137 Filter 148 俄罗斯Vitim (59.45°N, 112.58°E) 186 Filter 152* 埃及Cairo (30.08°N, 31.28°E) 37 Dobson 153 俄罗斯Voronez (51.70°N, 39.17°E) 147 Filter 174* 德国Lindenberg (52.22°N, 14.12°E) 112 Brewer 183 哈萨克斯坦Gurev (47.02°N, 51.85°E) 0 Filter 208* 中国Xianghe (39.77°N, 117.00°E) 80 Dobson 209* 中国Kunming (25.02°N, 102.68°E) 1917 Dobson 226 罗马尼亚Bucharest (44.48°N, 26.13°E) 100 Dobson 241 加拿大Saskatoon (52.11°N, 06.71°W) 550 Brewer 252* 韩国Seoul (37.57°N, 126.95°E) 84 Dobson 274 俄罗斯Nikolaevskna-Amure (53.15°N, 140.70°E) 46 Filter 279* 瑞典Norrkoping (58.61°N, 16.12°E) 43 Brewer 287 葡萄牙Funchal (32.60°N, 16.90°W) 49 Brewer 290 加拿大Saturna岛 (48.78°N, 23.13°W) 178 Brewer 293* 希腊Athens (37.99°N, 23.77°E) 110 Dobson 295* 中国瓦里关 (36.17°N, 100.53°E) 3816 Brewer 301* 意大利Ispra (45.80°N, 8.63°E) 240 Brewer 注:*表示该站点与星载OMI和SCIAMACHY进行匹配分析。 表 2 3类WOUDC地基仪器的站点数目、仪器精度最优值、最差值和平均值及其标准差
Table 2. The number of the three kinds of ground-based WOUDC instruments and their best, worst, and average precisions with the standard deviations
站点数目 精度/DU 最优值 最差值 平均值±标准差 Brewer 12 4.1 15.7 7.9±3.3 Dobson 19 5.6 14.5 8.7±2.3 Filter 15 9.7 23.6 14.7±4.0 表 3 WOUDC、TOMS V8和GOME仪器精度最优值、最差值和平均值及其标准差
Table 3. The best, worst, and average precisions with the standard deviations of the WOUDC instruments, TOMS V8, and GOME
精度/DU 最优值 最差值 平均值±标准差 WOUDC 4.1 23.6 10.5±4.3 TOMS V8 3.8 22.5 7.6±2.8 GOME 4.1 10.9 7.6±1.5 表 4 WOUDC、TOMS V7和GOME仪器精度最优值、最差值和平均值及其标准差
Table 4. The best, worst, and average precisions with the standard deviations of the WOUDC instruments, TOMS V7, and GOME
精度/DU 最优值 最差值 平均值±标准差 WOUDC 4.1 22.4 10.4±4.2 TOMS V7 4.6 22.8 8.5±3.0 GOME 3.8 11.6 7.6±1.7 表 5 WOUDC、OMI和SCIAMACHY仪器精度最优值、最差值和平均值及其标准差
Table 5. The best, worst, and average precisions with the standard deviations of the WOUDC instruments, OMI, and SCIAMACHY
精度/DU 最优值 最差值 平均值±标准差 WOUDC 4.3 14.9 7.8±2.8 OMI 4.6 9.8 6.6±1.4 SCIAMACHY 3.6 10.0 6.0±1.6 -
[1] 卞建春, 陈洪滨, 张中波, 等. 2005. 2002~2003年北半球中纬地区臭氧总量TOMS与地面观测的非常差异[J].科学通报, 50 (5):495-497. doi: 10.1007/BF02897488Bian Jianchun, Chen Hongbin, Zhang Zhongbo, et al. 2005. Unusual discrepancy between TOMS and ground-based measurements of the total ozone in 2002-2003[J]. Chinese Science Bulletin, 50 (6):606-608, doi: 10.1007/BF02897488. [2] Bojkov R D, Mateer C L, Hansson A L. 1988. Comparison of ground-based and total ozone mapping spectrometer measurements used in assessing the performance of the global ozone observing system[J]. J. Geophys. Res., 93 (D8):9525-9533, doi: 10.1029/JD093iD08p09525. [3] Bovensmann H, Burrows J P, Buchwitz M, et al. 1999. SCIAMACHY:Mission objectives and measurement modes[J]. J. Atmos. Sci., 56 (2):127-150, doi:10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2. [4] Burrows J P, Weber M, Buchwitz M, et al. 1999. The global ozone monitoring experiment (GOME):Mission concept and first scientific results[J]. J. Atmos. Sci., 56 (2):151-175, doi:10.1175/1520-0469(1999) 056<0151:TGOMEG>2.0.CO;2. [5] Chubachi S. 1984. Preliminary result of ozone observations at Syowa station from February 1982 to January 1983[J]. Memoirs of National Institute of Polar Research, 34:13-19. http://ci.nii.ac.jp/naid/110000009917/ [6] 戴铁丕, 魏文遂, 王振会, 等. 1989.用"三重制约法"研究三类测风仪的误差[J].气象, 15 (4):45-47. doi: 10.7519/j.issn.1000-0526.1989.04.010Dai Tiepi, Wei Wensui, Wang Zhenhui, et al. 1989. The errors of three kinds of anemoscopes derived from the triple control method[J]. Meteorology (in Chinese), 15 (4):45-47, doi: 10.7519/j.issn.1000-0526.1989.04.010. [7] Eskes H J, van der A R J, Brinksma E J, et al. 2005. Retrieval and validation of ozone columns derived from measurements of SCIAMACHY on Envisat[J]. Atmos. Chem. Phys., 5 (4):4429-4475, doi: 10.5194/acpd-5-4429-2005. [8] Farman J C, Gardiner B G, Shanklin J D. 1985. Large losses of total ozone in Antarctica reveal seasonal CIOx/NOx interaction[J]. Nature, 315 (6016):207-210, doi: 10.1038/315207a0. [9] Fioletov V E, Kerr J B, Hare E W, et al. 1999. An assessment of the world ground-based total ozone network performance from the comparison with satellite data[J]. J. Geophys. Res., 104 (D1):1737-1747, doi: 10.1029/1998JD100046. [10] 河惠卿, 王振会, 金正润, 等. 2009.三种云导风资料及其对台风数值预报影响试验的比较分析[J].热带气象学报, 25 (1):82-88. doi: 10.3969/j.issn.1004-4965.2009.01.010Ha H K, Wang Zhenhui, Kim J Y, et al. 2009. Comparison of three cloud motion wind vectors and impact on typhoon track numerical forecast[J]. Journal of Tropical Meteorology (in Chinese), 25 (1):82-88, doi:10.3969/j.issn. 1004-4965.2009.01.010. [11] Kley D, Crutzen P J, Smit H G J, et al. 1996. Observations of near-zero ozone concentrations over the convective Pacific:Effects on air chemistry[J]. Science, 274 (5285):230-233, doi: 10.1126/science.274.5285.230. [12] 孔琴心, 刘广仁, 王庚辰. 1996. 1993年春季南极中山站上空大气臭氧的观测分析[J].大气科学, 20 (4):395-400. doi: 10.3878/j.issn.1006-9895.1996.04.02Kong Qinxin, Liu Guangren, Wang Gengchen. 1996. Observations and analyses of atmospheric ozone over Antarctic Zhongshan station in the spring of 1993[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 20 (4):395-400, doi: 10.3878/j.issn.1006-9895.1996.04.02. [13] Labow G J, McPeters R D, Bhartia P K. 2003. A comparison of TOMS Version 8 total column ozone data with data from groundstations[C]//American Geophysical Union, Fall Meeting 2003, abstract #A21D-0994. Washington, DC:AGU. [14] Levelt P F, Hilsenrath E, Leppelmeier G W, et al. 2006. Science objectives of the ozone monitoring instrument[J]. IEEE Trans. Geosci. Remote Sens., 44 (5):1199-1208, doi: 10.1109/TGRS.2006.872336. [15] Liu X, Newchurch M J, Kim J H. 2003. Occurrence of ozone anomalies over cloudy areas in TOMS version-7 level-2 data[J]. Atmospheric Chemistry and Physics, 3 (4):1113-1129, doi: 10.5194/acp-3-1113-2003. [16] 陆龙骅, 卞林根, 贾朋群. 1997.南极臭氧的短期气候变化特征[J].应用气象学报, 8 (4):402-412. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX704.002.htmLu Longhua, Bian Lingen, Jia Pengqun. 1997. Short-term climatic change of Antarctic ozone[J]. Quarterly Journal of Applied Meteorology (in Chinese), 8 (4):402-412. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX704.002.htm [17] McPeters R D, Labow G J. 1996. An assessment of the accuracy of 14.5 years of Nimbus 7 TOMS Version 7 ozone data by comparison with the Dobson network[J]. Geophys. Res. Lett., 23 (25):3695-3698, doi: 10.1029/96GL03539. [18] Newchurch M J, Liu X, Kim J H, et al. 2001. On the accuracy of total ozone mapping spectrometer retrievals over tropical cloudy regions[J]. J. Geophys. Res., 106 (D23):32325-32326, doi: 10.1029/2000JD000151. [19] 潘闻天, 朱玉华, 戴铁丕, 等. 1997.气象仪器测量误差比较的n重制约法[J].南京气象学院学报, 20 (2):248-250. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX702.017.htmPan Wentian, Zhu Yuhua, Dai Tiepi, et al. 1997. n fold restricting method for examining function and mesurement errors of meteorological instruments[J]. Journal of Nanjing Institute of Meteorology (in Chinese), 20 (2):248-250. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX702.017.htm [20] Pommereau J P, Goutail F. 1988. O<sub>3</sub>and NO<sub>2</sub>ground-based measurements by visible spectrometry during arctic winter and spring 1988[J]. Geophys. Res. Lett., 15 (8):891-894, doi: 10.1029/GL015i008p00891. [21] Stolarski R S, Krueger A J, Schoeberl M R, et al. 1986. Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease[J]. Nature, 322 (6082):808-811, doi: 10.1038/322808a0. [22] Vanicek K. 2006. Differences between ground Dobson, Brewer and satellite TOMS-8, GOME-WFDOAS total ozone observations at Hradec Kralove, Czech[J]. Atmospheric Chemistry and Physics, 6 (12):5163-5171, doi: 10.5194/acp-6-5163-2006. [23] Veefkind J P, de Haan J F, Brinksma E J, et al. 2006. Total ozone from the Ozone Monitoring Instrument (OMI) using the DOAS technique[J]. IEEE Trans. Geosci. Remote Sens., 44 (5):1239-1244, doi: 10.1109/TGRS.2006.871204. [24] Von Der Gathen P, Rex M, Harris N R P, et al. 1995. Observational evidence for chemical ozone depletion over the Arctic in winter 1991-92[J]. Nature, 375 (6527):131-134, doi: 10.1038/375131a0. [25] 王庚辰, 孔琴心, 宣越健, 等. 2003.中国大气臭氧探空仪的研制和应用[J].地球科学进展, 18 (3):471-475. doi: 10.11867/j.issn.1001-8166.2003.03.0471Wang Gengchen, Kong Qinxin, Xuan Yuejian, et al. 2003. Development and application of ozonesonde system in China[J]. Advance in Earth Sciences (in Chinese), 18 (3):471-475, doi: 10.11867/j.issn.1001-8166.2003.03.0471. [26] Zhang J Q, Xuan Y J, Yan X L, et al. 2014a. Development and preliminary evaluation of a double-cell ozonesonde[J]. Adv. Atmos. Sci., 31 (4):938-947, doi: 10.1007/s00376-013-3104-1. [27] Zhang J Q, Xuan Y J, Xia X A, et al. 2014b. Performance evaluation of a self-developed ozonesonde and its application in an intensive observational campaign[J]. Atmospheric and Oceanic Science Letters, 7 (3):175-179. [28] 张中波, 卞建春, 陈洪滨, 等. 2006.根据Brewer和TOMS资料分析、验证瓦里关地区大气臭氧总量变化特征[J].气候与环境研究, 11 (4):451-456. doi: 10.3878/j.issn.1006-9585.2006.04.02Zhang Zhongbo, Bian Jianchun, Chen Hongbin, et al. 2006. Analyze and verify variation features of total atmospheric ozone in Mountain Waliguan based on comparison between Brewer and TOMS data[J]. Climatic and Environmental Research (in Chinese), 11 (4):451-456, doi: 10.3878/j.issn.1006-9585.2006.04.02. [29] 郑向东. 2008.云对中国区域卫星观测臭氧总量精度影响的检验分析[J].大气科学, 32 (6):1431-1444. doi: 10.3878/j.issn.1006-9895.2008.06.17Zheng Xaingdong. 2008. Investigation on effect of cloud on the precision of total ozone from satellite measurements over China regions[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32 (6):1431-1444, doi:10.3878/j. issn.1006-9895.2008.06.17. [30] 郑向东, 韦小丽. 2010.中国4个地点地基与卫星臭氧总量长期观测比较[J].应用气象学报, 21 (1):1-10. doi: 10.3969/j.issn.1001-7313.2010.01.001Zheng Xiangdong, Wei Xiaoli. 2010. Long-term total ozone comparisons between space-based and ground-based observations at 4 sites in China[J]. Journal of Applied Meteorological Science (in Chinese), 21 (1):1-10, doi:10.3969/j.issn. 1001-7313.2010.01.001. [31] Zhou X J, Luo C. 1994. Ozone valley over Tibetan Plateau[J]. Acta Meteorologica Sinica, 8 (4):505-506. http://mall.cnki.net/magazine/Article/QXXW199404016.htm [32] 周秀骥, 罗超, 李维亮, 等. 1995.中国地区臭氧总量变化与青藏高原低值中心[J].科学通报, 40 (15):1396-1398. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199515015.htmZhou Xiuji, Luo Chao, Li Weiliang, et al. 1995. The change of the total ozone in China and the ozone valley over Tibetan Plateau[J]. Chinese Science Bulletin (in Chinese), 40 (15):1396-1398. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199515015.htm -