高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斯堪的纳维亚遥相关对我国西南西部深秋降水的影响

刘扬 刘屹岷

刘扬, 刘屹岷. 斯堪的纳维亚遥相关对我国西南西部深秋降水的影响[J]. 气候与环境研究, 2017, 22(1): 80-88. doi: 10.3878/j.issn.1006-9585.2016.16029
引用本文: 刘扬, 刘屹岷. 斯堪的纳维亚遥相关对我国西南西部深秋降水的影响[J]. 气候与环境研究, 2017, 22(1): 80-88. doi: 10.3878/j.issn.1006-9585.2016.16029
Yang LIU, Yimin LIU. The Impact of the Scandinavian Teleconnection Pattern on Late Autumn Rainfall in the Western Region of Southwest China[J]. Climatic and Environmental Research, 2017, 22(1): 80-88. doi: 10.3878/j.issn.1006-9585.2016.16029
Citation: Yang LIU, Yimin LIU. The Impact of the Scandinavian Teleconnection Pattern on Late Autumn Rainfall in the Western Region of Southwest China[J]. Climatic and Environmental Research, 2017, 22(1): 80-88. doi: 10.3878/j.issn.1006-9585.2016.16029

斯堪的纳维亚遥相关对我国西南西部深秋降水的影响

doi: 10.3878/j.issn.1006-9585.2016.16029
基金项目: 

公益性行业(气象)科研专项 GYHY201406001

国家自然科学基金项目 91437219

中国科学院战略性先导科技专项 XDA11010402

详细信息
    作者简介:

    刘扬,女,1988年出生,博士研究生,主要从事气候动力学研究。E-mail:liuyang@lasg.iap.ac.cn

    通讯作者:

    刘屹岷,E-mail:lym@lasg.iap.ac.cn

  • 中图分类号: P461

The Impact of the Scandinavian Teleconnection Pattern on Late Autumn Rainfall in the Western Region of Southwest China

Funds: 

Special Scientific Research Fund of Meteorological Public Welfare Profession of China GYHY201406001

National Natural ScienceFoundation of China 91437219

Chinese Academy of Sciences Strategic Priority Program XDA11010402

  • 摘要: 使用中国台站降水数据和NCEP/NCAR再分析资料,分析了1961~2012年深秋斯堪的纳维亚遥相类型(SCA)与同期我国西南西部降水的关系,以及SCA型环流异常影响西南西部降水的具体物理过程。结果表明:SCA型遥相关与西南西部降水存在显著的负相关关系,且具有非对称性:SCA正位相时西南西部降水偏少,而SCA负位相与西南西部降水的关系不显著。SCA正位相年西南西部的降水偏少与该地区对流层中下层的异常下沉运动有关。垂直运动方程诊断结果表明该异常下沉运动主要是由冷平流异常维持。气候态风场对温度异常场的平流在西南西部的冷平流异常中起主要作用。SCA正位相时,西南西部地区的东侧有暖异常,而其西侧的印度半岛北部及伊朗高原地区为冷异常,在平均西风作用下,西南西部有冷平流异常,造成该地区的异常下沉运动,从而降水偏少。
  • 图  1  1961~2012 年深秋(11 月)去除线性趋势的(a)SCA 指数与中国同期降水的相关系数分布[阴影表示通过90%置信水平检验,灰色方框表示西南西部区域(20°N~30°N,97.5°E~105°E)]、(b)标准化SCA 指数和西南西部降水指数的时间序列、(c)标准化SCA 指数与西南西部降水指数的散点图

    Figure  1.  (a)Correlation coefficient distribution between the SCA index and late autumn(Nov)precipitation in China during 1961−2012 [shaded areas are for values significant above the 90% confidence level; the grey-line rectangular box represents the western area of Southwest China(WSWC,20°N−30°N,97.5°E−105°E)];(b)time series of the normalized SCA index and WSWC rain index for 1961−2012;(c)scatter plot of the WSWC rain index against the normalized SCA index(the linear trends of indices and rainfall have been removed)

    图  2  SCA(a)正位相年和(b)负位相年合成的降水异常场(单位:mm/d,等值线间隔为0.2,实/虚线表示正/负值,阴影表示通过90%置信水平检验)

    Figure  2.  Composite anomalies of precipitation(units: mm/d)for the(a)positive and(b)negative SCA years(contour interval is 0.2,and solid/dashed lines are for positive/negative values; shaded areas are for values significant above the 90% confidence level)

    图  3  SCA 正位相年合成的(a)500 hPa 垂直速度异常场,(b)20°N~30°N 平均的垂直速度异常的经度—高度剖面。带点区域表示通过90%置信水平检验

    Figure  3.  Composite vertical velocity anomalies(a)at 500 hPa and(b)in the zonal−vertical cross section averaged over 20°N−30°N for the positive SCA years. Areas with dots are significant at the 90% confidence level

    图  4  SCA 正位相年合成的20°N~30°N 平均的垂直运动方程中(a)B 项异常、(b)C 项异常的经度—高度剖面(带点区域表示通过90%置信水平检验),(c)各个SCA 正位相年西南西部区域平均的500 hPa B 项异常和C 项异常

    Figure  4.  The zonal−vertical cross sections of composite(a)term B and(b)term C anomalies averaged over 20°N−30°N for the positive SCA years(areas with dots are significant at the 90% confidence level),(c)the anomalies of term B and term C averaged over WSWC at 500 hPa for each of the positive SCA years

    图  5  SCA 正位相年合成的500 hPa(a)温度平流异常、(b)T-adv1、(c)T-adv2、(d)T-adv3

    Figure  5.  The composite(a)anomalous temperature advection,(b)T-adv1,(c)T-adv2,and(d)T-adv3 at 500 hPa for the positive SCA years

    图  6  500 hPa 的(a)SCA 正位相年合成的异常温度场(带点区域通过90%置信水平检验)、(b)气候态风场、(c)气候态温度场、(d)SCA 正位相年的合成的异常风场(黑色矢量表示通过90%置信水平检验)

    Figure  6.  (a)The anomalous temperature composited for the positive SCA years(areas with anomalies are significant at the 90% confidence level),(b)the climatological mean wind,(c)the climatological mean temperature,and(d)the anomalous wind composited for the positive SCA years(black vectors denote the anomalies are significant at the 90% confidence level)at 500 hPa

    图  7  SCA 正位相年合成的北半球500 hPa(a)温度异常场,(b)位势高度异常场(阴影)和异常波活动通量(矢量,略去值小于0.4 个单位的矢量)。带点区域表示通过90%置信水平检验

    Figure  7.  Composite anomalies of(a)temperature and(b)geopotential height(shaded)and wave activity fluxes(vectors,values less than 0.4 units are omitted)at 500 hPa for the positive SCA years. Areas with dots are significant at the 90% confidence level

    表  1  SCA 正位相年合成的600~400 hPa 各层西南西部平均的公式(4)右端各项对温度平流异常的贡献率及其平均

    Table  1.   Percentage contributions of individual terms on the right hand side of Equation(4)to the temperature advection anomalies averaged over WSWC at each pressure level between 600−400 hPa and the average

    对温度平流异常的贡献率
    高度层/hPaT-adv1T-adv2T-adv3
    6000.70.240.06
    5000.850.070.08
    4000.99-0.120.13
    平均0.750.170.08
    下载: 导出CSV
  • [1] Barnston A G, Livezey R E. 1987. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns[J]. Mon. Wea. Rev., 115(6):1083-1126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL> 2.0.CO;2.
    [2] 布和朝鲁, 施宁, 纪立人. 2008. 2000/2001年冬季北欧异常流型形成机理及其对我国北方天气的影响[J]. 高原气象, 27(1):76-83. http://cn.bing.com/academic/profile?id=02e7917616f0b465be0844041af6e326&encoded=0&v=paper_preview&mkt=zh-cn

    Bueh Cholaw, Shi Ning, Ji Liren. 2008. Maintenance mechanism of the Scandinavian pattern in its positive phase during 2000/2001 winter and its influence on the weather over the northern part of China[J]. Plateau Meteorology (in Chinese), 27(1):76-83. http://cn.bing.com/academic/profile?id=02e7917616f0b465be0844041af6e326&encoded=0&v=paper_preview&mkt=zh-cn
    [3] Bueh C, Nakamura H. 2007. Scandinavian pattern and its climatic impact[J]. Quart. J. Roy. Meteor. Soc., 133(629):2117-2131, doi: 10.1002/qj.173.
    [4] Feng L, Li T, Yu W D. 2014. Cause of severe droughts in Southwest China during 1951-2010[J]. Climate Dyn., 43(7):2033-2042, doi: 10.1007/s00382-013-2026-z.
    [5] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project[J]. Bull. Amer. Meteor. Soc., 77(3):437-471, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
    [6] 刘扬, 刘屹岷. 2016. 我国西南地区秋季降水年际变化的空间差异及其成因[J]. 大气科学, doi: 10.3878/j.issn.1006-9895.1511.15269.

    Liu Yang, Liu Yimin. 2016. Spatial patterns and causes of inter-annual variations of autumn rainfall in southwest China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), doi:10.3878/j.issn.1006-9895. 1511.15269.
    [7] 刘毓赟, 王林. 2014. 冬季斯堪的纳维亚遥相关型在20世纪70年代末的年代际变化[J]. 气候与环境研究, 19(3):371-382. doi: 10.3878/j.issn.1006-9585.2013.13052

    Liu Yuyun, Wang Lin. 2014. Interdecadal changes of Scandinavian teleconnection pattern in the late 1970s[J]. Climatic and Environmental Research (in Chinese), 19(3):371-382, doi: 10.3878/j.issn.1006-9585.2013.13052.
    [8] Liu Y Y, Wang L, Zhou W, et al. 2014. Three Eurasian teleconnection patterns:Spatial structures, temporal variability, and associated winter climate anomalies[J]. Climate Dyn., 42(11-12):2817-2839, doi: 10.1007/s00382-014-2163-z.
    [9] Plumb R A. 1985. On the three-dimensional propagation of stationary waves[J]. J. Atmos. Sci., 42(3):217-229, doi:10.1175/1520-0469(1985)042< 0217:OTTDPO>2.0.CO;2.
    [10] Wei W, Zhang R H, Wen M, et al. 2014. Impact of Indian summer monsoon on the South Asian high and its influence on summer rainfall over China[J]. Climate Dyn., 43(5-6):1257-1269, doi: 10.1007/s00382-013-1938-y.
    [11] 王林, 冯娟. 2011. 我国冬季降水年际变化的主模态分析[J]. 大气科学, 35(6):1105-1116. doi: 10.3878/j.issn.1006-9895.2011.06.10

    Wang Lin, Feng Juan. 2011. Two major modes of the wintertime precipitation over China[J]. Chinses Journal of Atmospheric Sciences (in Chinese), 35(6):1105-1116, doi:10.3878/j.issn.1006-9895. 2011.06.10.
    [12] 韦玮, 王林, 陈权亮, 等. 2014. 我国前冬和后冬气温年际变化的特征与联系[J]. 大气科学, 38(3):524-536. doi: 10.3878/j.issn.1006-9895.1401.13320

    Wei Wei, Wang Lin, Chen Quanliang, et al. 2014. Interannual variations of early and late winter temperatures in China and their linkage[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(3):524-536, doi: 10.3878/j.issn.1006-9895.1401.13320.
    [13] 杨莲梅, 史玉光, 汤浩. 2010a. 新疆北部冬季降水异常成因[J]. 应用气象学报, 21(4):491-499. doi: 10.11898/1001-7313.20100413

    Yang Lianmei, Shi Yuguang, Tang Hao. 2010a. Causes of winter precipitation anomalies in Northern Xinjiang[J]. Journal of Applied Meteorological Science (in Chinese), 21(4):491-499, doi: 10.11898/1001-7313.20100413.
    [14] 杨莲梅, 史玉光, 汤浩. 2010b. 新疆春季降水异常的环流和水汽特征[J]. 高原气象, 29(6):1464-1473. http://cn.bing.com/academic/profile?id=18f67080dd6d09b9a89d57672569ad8a&encoded=0&v=paper_preview&mkt=zh-cn

    Yang Lianmei, Shi Yuguang, Tang Hao. 2010b. Characteristics of atmospheric circulation and water vapor for spring precipitation anomaly in Xinjiang[J]. Plateau Meteorology (in Chinese), 29(6):1464-1473. http://cn.bing.com/academic/profile?id=18f67080dd6d09b9a89d57672569ad8a&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  2188
  • HTML全文浏览量:  20
  • PDF下载量:  1825
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-27
  • 网络出版日期:  2016-03-30
  • 刊出日期:  2017-01-01

目录

    /

    返回文章
    返回