Interannual and Seasonal Trend Analysis of Vegetation Condition in Xinjiang Based on 1982-2013 NDVI Data
-
摘要: 以GIMMS 3g(the third generation Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index)数据为基础,利用月合成、标准距平和趋势保留预置白方法进行数据预处理,采用季节趋势分析方法提取振幅0、振幅1和相位1季节表征因子,运用MK(Mann-Kendall)和CMK(Contextual Mann-Kendall)趋势检验获取新疆植被年际和季节趋势变化特征,结合土地利用覆盖数据,侦测显著性变化区域的空间分布特点,讨论并分析不同预处理方法和趋势分析方法下的结果差异。研究表明:(1)植被状况趋于退化的区域面积明显大于植被状况转好的面积,植被退化区域主要集中在南北疆荒漠区域的未利用地和草地,转好的区域则主要集中在山区草地、未利用地和耕地区域;(2)新疆植被年内波动幅度有明显增加的趋势,主要分布在塔里木盆地南缘以北的草地、未利用地和耕地;(3)不同预处理方法下的植被状况趋势显著性结果存在明显的影响,按照显著性信息的提取能力排序,标准距平>趋势保留预置白>原始数据>月平均;(4)耕地区域中有87.88%表现出年内波动幅度显著增加的趋势,53.31%生长季开始期显著推迟。
-
关键词:
- 年际变化 /
- 季节变化 /
- GIMMS 3g数据 /
- 趋势分析 /
- 新疆
Abstract: Based on GIMMS 3g (the third generation Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index) data, three preprocessing methods including monthly aggregation, standard anomaly computation, and trend-preserving prewhitening were used to develop six data series. Seasonal trend analysis was applied to extract three seasonal representative factors, i.e. amplitude 0, amplitude 1, and phase 1 to detect the characteristic of seasonal trend. The interannual and seasonal trend analysis was conducted using CMK (Contextual Mann-Kendall) and MK (Mann-Kendall) trend test methods. Land use and cover data was used as an accessory to identify spatial distribution pattern of areas with significant changes. The difference between preprocessing method and trend test method was also discussed. The result shows that:(1) The proportional area of vegetation deterioration is higher than the proportional area of vegetation improvement; the former is mainly located at areas of unused lands and grasslands, and the latter is found over grasslands, unused lands and farmlands. (2) The amplitudes of annual variability show a significant increasing trend mainly over grasslands, unused lands and farmlands in the southern margin of the Tarim basin. (3) Different preprocessing methods have obvious impacts on the result of trend analysis. According to the ability of these methods to extract significant trend information, they are in the sequence of standard anomaly > trend-preserving prewhiting > original data > monthly aggregate. (4) 87.88% of farmlands demonstrates a significant increase trend in annual variation amplitude and 53.31% of farmlands shows a significant trend of delayed onset of growing season.-
Key words:
- Interannual change /
- Seasonal change /
- GIMMS 3g data /
- Trend analysis /
- Xinjiang
-
图 5 不同预处理数据MK(第一行、第三行)和CMK(第二行、第四行)长期趋势变化空间分布与对比:(a、b)原始数据;(c、d)月平均数据;(e、f)标准距平数据;(g、h)月平均标准距平数据;(i、j)标准距平趋势保留预置白数据;(k、l)月平均标准距平趋势保留预置白数据
Figure 5. Comparison and distributions of long-term changes detected from six preprocessed data with (a, c, e, g, i, k) MK (Mann-Kendall) test and (b, d, f, h, j, l) CMK (Contextual Mann-Kendall) test: (a, b) Original data; (c, d) monthly average data; (e, f) standard deviation data; (g, h) monthly average and standard deviation data; (i, j) standard deviation and trend-preserving prewhiting data; (k, l) monthly average, standard deviation, and trend-preserving prewhiting data
表 1 季节趋势变化三组分分类统计表
Table 1. Statistics of three components for seasonal trend analysis
面积比例 季节趋势分析 极显著减少 显著减少 不显著 显著增加 极显著增加 振幅0 MK 41.41% 5.96% 37.79% 5.02% 9.82% 振幅0 CMK 43.46% 5.24% 37.56% 5.41% 8.33% 振幅1 MK 7.43% 6.77% 55.64% 8.66% 21.51% 振幅1 CMK 8.14% 6.72% 49.83% 7.79% 27.53% 相位1 MK 6.02% 4.20% 79.04% 6.62% 4.12% 相位1 CMK 6.84% 3.67% 80.42% 5.98% 3.08% 表 2 振幅1和相位1趋势变化类型的土地利用空间分布情况
Table 2. Spatial distributions for amplitude 1 and phase 1 trend change types combined with LUCC data
面积比例 变化类型 林地 草地 水域 建设用地 未利用地 耕地 振幅1 极显著减少 0.63%|2.98% 27.14%|7.05% 3.39%|4.75% 0.00%|3.13% 68.54%|8.43% 0.29%|0.69% 显著减少 0.53%|1.28% 17.43%|4.19% 3.11%|7.28% 0.06%|3.13% 78.70%|8.68% 0.18%|0.23% 不显著 0.69%|28.51% 17.67%|40.36% 2.75%|58.54% 0.09%|18.75% 78.39%|67.24% 0.41%|11.21% 显著增加 3.54%|11.91% 44.59%|12.82% 3.74%|11.08% 0.25%|6.25% 46.05%|6.57% 1.82%|6.64% 极显著增加 5.97%|55.32% 48.80%|35.58% 3.71%|18.35% 0.89%|68.75% 26.17%|9.07% 14.46%|81.24% 相位1 极显著减少 3.67%|9.36% 28.70%|5.95% 2.82%|5.38% 1.51%|28.13% 33.94%|3.36% 29.36%|40.5% 显著减少 2.53%|4.68% 21.67%|3.13% 3.00%|4.11% 0.94%|12.5% 58.44%|4.05% 13.41%|12.81% 不显著 2.07%|69.36% 27.86%|75.7% 3.05|76.27 0.17%|43.75% 64.62%|84.12% 2.24%|40.5% 显著增加 3.04%|8.51% 41.69%|9.49% 4.05%|8.54% 0.42%|9.38% 49.08%|5.35% 1.73%|2.52% 极显著增加 4.60%|8.09% 40.71%|5.78% 4.69%|6.01% 0.38%|6.25% 45.98%|3.11% 3.64%|3.43% 注:“|”前数值为占该行变化类型的面积比例,“|”后为占该列土地利用类型面积的比例。 -
[1] 杜加强, 贾尔恒·阿哈提, 赵晨曦, 等. 2015. 1982~2012年新疆植被NDVI的动态变化及其对气候变化和人类活动的响应[J].应用生态学报, 26 (12):3567-3578. http://www.cjae.net/CN/Y2015/V26/I12/3567Du Jiaqiang, Jiaerheng Ahati, Zhao Chenxi, et al. 2015. Dynamic changes in vegetation NDVI from 1982 to 2012 and its responses to climate change and human activities in Xinjiang, China[J]. Chinese Journal of Applied Ecology (in Chinese), 26 (12):3567-3578. http://www.cjae.net/CN/Y2015/V26/I12/3567 [2] Eastman J, Sangermano F, Ghimire B, et al. 2009. Seasonal trend analysis of image time series[J]. Int. J. Remote Sens., 30 (10):2721-2726, doi: 10.1080/01431160902755338. [3] Eastman J, Sangermano F, Machado E, et al. 2013. Global trends in seasonality of Normalized Difference Vegetation Index (NDVI), 1982-2011[J]. Remote Sensing, 5 (10):4799-4818, doi: 10.3390/rs5104799. [4] 国志兴, 张晓宁, 王宗明, 等. 2010.东北地区植被物候对气候变化的响应[J].生态学杂志, 29 (3):578-585. http://www.irgrid.ac.cn/handle/1471x/727758?mode=full&submit_simple=Show+full+item+recordGuo Zhixing, Zhang Xiaoning, Wang Zongming, et al. 2010. Responses of vegetation phenology in Northeast China to climate change[J]. Chinese Journal of Ecology (in Chinese), 29 (3):578-585. http://www.irgrid.ac.cn/handle/1471x/727758?mode=full&submit_simple=Show+full+item+record [5] Julien Y, Sobrino J A, Verhoef W. 2006. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999[J]. Remote Sens. Environ., 103 (1):43-55, doi: 10.1016/j.rse.2006.03.011 [6] Kucharik C J, Barford C C, Maayar M E, et al. 2006. A multiyear evaluation of a dynamic global vegetation model at three AmeriFlux forest sites:Vegetation structure, phenology, soil temperature, and CO2 and H2O vapor exchange[J]. Ecological Modelling, 196 (1-2):1-31, doi: 10.1016/j.ecolmodel.2005.11.031. [7] 刘洋, 李诚志, 刘志辉, 等. 2016. 1982~2013年基于GIMMS-NDVI的新疆植被覆盖时空变化[J].生态学报, 36 (19):6198-6208. https://www.wenkuxiazai.com/doc/3eab9504b9f3f90f77c61b79.htmlLiu Yang, Li Chengzhi, Liu Zhihui, et al. 2016. Assessment of spatio-temporal variations in vegetation cover in Xinjiang from 1982-2013 based on GIMMS-NDVI[J]. Acta Ecological Sinica (in Chinese), 36 (19):6198-6208. https://www.wenkuxiazai.com/doc/3eab9504b9f3f90f77c61b79.html [8] 马勇刚, 张弛, 塔西甫拉提·特依拜. 2014.中亚及中国新疆干旱区植被物候时空变化[J].气候变化研究进展, 10 (2):95-102. doi: 10.3969/j.issn.1673-1719.2014.02.003.0Ma Yonggang, Zhang Chi, Tiyip Tashpolat. 2014. Spatial-temporal change of vegetation phenology in arod zone of central Asia and Xinjiang, China[J]. Progressus Inquisitiones De Mutatione Climatis (in Chinese), 10 (2):95-102, doi: 10.3969/j.issn.1673-1719.2014.02.003.0 [9] Neeti N, Ronald Eastman R. 2011. A contextual Mann-Kendall approach for the assessment of trend significance in image time series[J]. Transactions in Gis, 15 (5):599-611, doi: 10.1111/j.1467-9671.2011.01280.x. [10] Sen P K. 1968. Estimates of the regression coefficient based on Kendall's Tau[J]. Journal of the American Statistical Association, 63 (324):1379-1389, doi: 10.1080/01621459.1968.10480934. [11] Wang X L, Swail V R. 2001. Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes[J]. J. Climate, 14 (10):2204-2221, doi:10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO; 2. [12] 王智, 师庆三, 王涛, 等. 2011. 1982~2006年新疆山地-绿洲-荒漠系统植被覆盖变化时空特征[J].自然资源学报, 26 (4):609-618. doi: 10.11849/zrzyxb.2011.04.007Wang Zhi, Shi Qingsan, Wang Tao, et al. 2011. Spatial-temporal characteristics of vegetation cover change in mountain-oasis-desert system of Xinjiang from 1982-2006[J]. Journal of Natural Resources (in Chinese), 26 (4):609-618. doi: 10.11849/zrzyxb.2011.04.007 [13] 许玉凤, 杨井, 陈亚宁, 等. 2015.近32年来新疆地区植被覆盖的时空变化[J].草业科学, 32 (5):702-709. doi: 10.11829/j.issn.1001-0629.2014-0413Xu Yufeng, Yang Jing, Chen Yaning, et al. 2015. The spatial-temporal variation of vegetation cover in Xinjiang from 1982-2013[J]. Pratacultural Science (in Chinese), 32 (5):702-709, doi: 10.11829/j.issn.1001-0629.2014-0413. [14] 许玉凤, 杨井, 李卫红, 等. 2016. 1982~2013年新疆不同植被生长时空变化[J].草业学报, 25 (1):47-63. doi: 10.11686/cyxb2015073Xu Yufeng, Yang Jing, Li Weihong, et al. 2016. Spatia-temporal change in different vegetation growth of Xinjiang from 1982 to 2013[J]. Acra Prataculturae Sinica (in Chinese), 25 (1):47-63. doi: 10.11686/cyxb2015073 [15] 杨光华, 包安明, 陈曦, 等. 2009. 1998~2007年新疆植被覆盖变化及驱动因素分析[J].冰川冻土, 31 (3):436-445. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDQ200807001085.htm [16] Yang Guanghua, Bao Anming, Chen Xi, et al. Study of the vegetation cover change and its driving factors over Xinjiang during 1998-2007[J]. Journal of Glaciology and Geocryology (in Chinese), 31 (3):436-445. http://jal.xjegi.com/EN/article/downloadArticleFile.do?attachType=PDF&id=72 [17] Yue S, Wang C Y. 2002. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test[J]. Water Resour. Res., 38 (6):4-1-4-7, doi: 10.1029/2001WR000861. [18] 赵霞, 谭琨, 方精云. 2011. 1982~2006年新疆植被活动的年际变化及其季节差异[J].干旱区研究, 28 (1):10-16. http://www.wenkuxiazai.com/doc/e007ad32b90d6c85ec3ac61f.htmlZhao Xia, Tan Kun, Fang Jingyun. 2011. NDVI-base interannual and seasonal variations of vegetation activity in Xinjiang during the period of 1982-2006[J]. Arid Zone Research (in Chinese), 28 (1):10-16. http://www.wenkuxiazai.com/doc/e007ad32b90d6c85ec3ac61f.html [19] 周梦甜, 李军, 朱康文. 2015.近15 a新疆不同类型植被NDVI时空动态变化及对气候变化的响应[J].干旱区地理, 38 (4):779-787. http://www.oalib.com/paper/4179341Zhou Mengtian, Li Jun, Zhu Kangwen. 2015. Spatial-temporal dynamic of different types of vegetation NDVI and its response to climate change in Xinjiang during 1998-2013[J]. Arid Land Geography (in Chinese), 38(4):779-787. http://www.oalib.com/paper/4179341 -