高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微降水雷达测量精度分析

王洪 雷恒池 杨洁帆

王洪, 雷恒池, 杨洁帆. 微降水雷达测量精度分析[J]. 气候与环境研究, 2017, 22(4): 392-404. doi: 10.3878/j.issn.1006-9585.2017.16166
引用本文: 王洪, 雷恒池, 杨洁帆. 微降水雷达测量精度分析[J]. 气候与环境研究, 2017, 22(4): 392-404. doi: 10.3878/j.issn.1006-9585.2017.16166
Hong WANG, Hengchi LEI, Jiefan YANG. Analysis of Measurement Accuracy of Micro Rain Radar[J]. Climatic and Environmental Research, 2017, 22(4): 392-404. doi: 10.3878/j.issn.1006-9585.2017.16166
Citation: Hong WANG, Hengchi LEI, Jiefan YANG. Analysis of Measurement Accuracy of Micro Rain Radar[J]. Climatic and Environmental Research, 2017, 22(4): 392-404. doi: 10.3878/j.issn.1006-9585.2017.16166

微降水雷达测量精度分析

doi: 10.3878/j.issn.1006-9585.2017.16166
基金项目: 

国家自然科学基金 41475028

国家自然科学基金 41530427

山东省气象局项目 2014SDQXZ03

山东省气象局项目 2013SDQXZ04

详细信息
    作者简介:

    王洪, 女, 1984年出生, 博士研究生, 主要从事大气遥感方面的研究。E-mail:sdsqxjyqj@163.com

    通讯作者:

    雷恒池, E-mail:leihc@mail.iap.ac.cn

  • 中图分类号: P407

Analysis of Measurement Accuracy of Micro Rain Radar

Funds: 

National Natural Science Foundation of China 41475028

National Natural Science Foundation of China 41530427

Program of Shandong Province Meteorological Bureau 2014SDQXZ03

Program of Shandong Province Meteorological Bureau 2013SDQXZ04

  • 摘要: 利用数值模拟的方法,讨论了利用微降水雷达MRR(Micro Rain Radar)雷达功率谱密度反演降水参数时,MIE散射(米散射)效应、垂直气流(包括上升气流、下沉气流)对数浓度N、雷达反射率Z、雨强I、液态含水量LWC等参数的影响。MIE散射主要影响直径为1.20~4.00 mm的粒子,MIE散射效应影响的NZI、LWC偏差的平均值分别为2.74 m-3 mm-1、1.47 dBZ、0.0061 mm h-1、0.0004 g m-3。下沉气流使反演液滴直径偏大,上升气流使得反演的液滴直径偏小,下沉气流的影响更大,尤其是对低层影响大于高层。例如,在300 m高度上,当液滴直径为2.67 mm时,下沉气流为2.00 m s-1时,理论上反演的直径为8.07 mm,超出了MRR探测的阈值,其相对误差值能接近200%。下沉气流使得反射率谱向大粒子方向平移,且谱型展宽;上升气流则相反。将MRR资料与同步观测的THIES雨滴谱仪数据进行比对,分析MRR资料的可靠性。选取2015年4月1日01~12时(协调世界时)山东济南的一次降水过程,将MRR在300 m高度上反演的雷达反射率因子、雨强、数浓度、中值体积直径与雨滴谱仪资料进行对比。结果表明:两种仪器探测的ZIN、中值体积直径D0在时间序列上都有较好的吻合度,变化趋势和幅度相近,ZID0的平均偏差分别为1.19 dBZ、0.34 mm h-1、0.36 mm。MRR反演的I值偏大,而粒子直径偏小,分析了产生偏差的主要原因,除了探测系统偏差、分析方法本身存在的偏差外,上升气流导致的偏差不容忽视。这些结果初步验证了微降水雷达观测的功率谱密度及其反演方法的可靠性。
  • 图  1  不同雨强条件下,瑞利散射和MIE散射计算的反射率谱密度

    Figure  1.  Spectral reflectivity density calculated by Rayleigh and MIE scattering under different rain rate (I)

    图  2  MIE散射和瑞利散射反演的降水参数NZI和LWC

    Figure  2.  Precipitation parameters N (number concentration), Z (radar reflectivity), I (rain rate), and LWC (liquid water content) retrieved by Mie and Rayleigh scattering

    图  3  MIE散射和瑞利散射反演的降水参数ZI和LWC的偏差分布

    Figure  3.  Biases distribution of precipitation parameters Z, I, and LWC retrieved by Mie and Rayleigh scattering

    图  4  垂直气流对液滴直径影响的(a)绝对偏差和(b)相对偏差。h表示高度

    Figure  4.  Impacts of vertical motion on droplet diameter: (a) Absolute deviation; (b) relative deviation. Letter h represent height

    图  5  反射率谱密度向右移动5条谱线,即垂直气流速度va=0 m s−1时的反射率谱密度向右移动5条谱线,得到va=0.94 m s−1时的反射率谱密度

    Figure  5.  Rightward shift of 5 lines of spectral reflectivity density when va is 0 m s−1, the spectral reflectivity density of va=0.94 m s−1 is obtained

    图  6  垂直气流对反射率谱密度的影响

    Figure  6.  Impact of vertical motion on spectral reflectivity density

    图  7  垂直气流对粒子数浓度的影响

    Figure  7.  Impact of vertical motion on number concentration (N)

    图  8  垂直气流对(a)雷达反射因子、(b)雨强、(c)液态水含量的影响

    Figure  8.  Impacts of vertical motion on (a) Z, (b) I, and (c) LWC

    图  9  (a)MRR和雨滴谱仪观测的Z随时间演变;(b)Z>0时两者偏差随时间演变

    Figure  9.  Z distributions observed by MRR and disdrometer, respectively; (b) Z bias distribution between MRR and disdrometer observations when Z > 0

    图  10  MRR和雨滴谱仪观测的雨强I随时间演变

    Figure  10.  Rain rate (I) distributions observed by MRR and disdrometer, respectively

    图  11  MRR和雨滴谱仪观测的粒子数浓度随时间演变

    Figure  11.  Number concentration (N) distributions observed by MRR and disdrometer, respectively

    图  12  MRR和雨滴谱仪观测的D0随时间演变

    Figure  12.  D0 (median volume diameter) distributions observed by MRR and disdrometer, respectively

    表  1  2 mm h-1雨强下MIE散射和瑞利散射反演的降水参数偏差统计

    Table  1.   Statistical biases of precipitation parameters retrieved by Mie and Rayleigh scattering when I=2 mm h-1

    偏差最大值 偏差最小值 平均偏差 相对偏差
    N/m-3 mm-1 33.24 0.0001 2.74 35.37%
    Z/dBZ 4.27 0.0034 1.47 2.78%
    I/mm h-1 0.025 0.0000 0.0061 33.12%
    LWC/g m-3 0.0019 0.0000 0.0004 33.12%
    下载: 导出CSV
  • [1] Atlas D, Ulbrich C W, Marks Jr F D, et al. 1999. Systematic variation of drop size and radar-rainfall relations [J]. J. Geophys. Res., 104 (D6):6155-6169, doi: 10.1029/1998JD200098.
    [2] Cao Q, Zhang G F, Brandes E, et al. 2008. Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma [J]. Journal of Applied Meteorology and Climatology, 47 (8):2238-2255, doi: 10.1175/2008JAMC1732.1.
    [3] 陈宝君, 李子华, 刘吉成, 等. 1998.三类降水云雨滴谱分布模式[J].气象学报, 56 (4): 506-512. doi: 10.11676/qxxb1998.046

    Chen Baojun, Li Zihua, Liu Jicheng, et al. 1998. Model of raindrop size distribution in three types of precipitation[J]. Acta Meteorologica Sinica (in Chinese), 56 (4): 506-512, doi:10. 11676/qxxb1998.046.
    [4] Chen B J, Wang J, Gong D L. 2016. Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over East China [J]. Journal of Applied Meteorology and Climatology, 55 (3): 621-634, doi: 10.1175/JAMC-D-15-0127.1.
    [5] 陈勇, 刘辉志, 安俊岭, 等. 2010.垂直指向测雨雷达的误差模拟及相互校准[J].大气科学, 34 (6): 1114-1126. doi: 10.3878/j.issn.1006-9895.2010.06.07

    Chen Yong, Liu Huizhi, An Junling, et al. 2010. Error analysis and intercalibrations of vertically pointing radars on the rainfall measurement [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34 (6): 1114-1126, doi:10.3878/j.issn. 1006-9895.2010.06.07.
    [6] Chen Y, Liu H Z, An J L, et al. 2015. A field experiment on the small-scale variability of rainfall based on a network of Micro Rain radars and rain gauges [J]. Journal of Applied Meteorology and Climatology, 54 (1):243-255, doi: 10.1175/JAMC-D-13-0210.1.
    [7] Clemens M, Gerhard P, Seltmann J, et al. 2008. Identification of temporal stable Z/R relations using micro-rain radars. The Fifth European Conference on Radar in Meteorology and Hydrology.
    [8] Gunn R, Kinzer G D. 1949. The terminal velocity of fall for water droplets in stagnant air [J]. Journal of the Atmospheric Sciences, 6 (4): 243-248, doi:10.1175/1520-0469(1949)006 < 0243:TTVOFF > 2.0.CO; 2.
    [9] Harikumar R, Sampath S, Kumar V S. 2009. An empirical model for the variation of rain drop size distribution with rain rate at a few locations in southern India [J]. Advances in Space Research, 43 (5): 837-844, doi: 10.1016/j.asr.2008.11.001.
    [10] Harikumar R, Sampath S, Kumar V S. 2010. Variation of rain drop size distribution with rain rate at a few coastal and high altitude stations in southern peninsular India [J]. Advances in Space Research, 45 (4):576-586, doi: 10.1016/j.asr.2009.09.018.
    [11] Harikumar R, Sampath S, Kumar V S. 2012. Altitudinal and temporal evolution of raindrop size distribution observed over a tropical station using a K-band radar [J]. Int. J. Remote. Sens., 33 (10): 3286-3300, doi: 10.1080/01431161.2010.549853.
    [12] Hauser D, Amayenc P. 1983. Exponential size distributions of raindrops and vertical air motions deduced from vertically pointing Doppler radar data using a new method [J]. J. Appl. Meteor., 22(3): 407-418, doi:10.1175/ 1520-0450(1983)022 < 0407:ESDORA > 2.0.CO; 2.
    [13] 何思远, 刘晓阳, 孙大利. 2015a.测雨雷达反演雨滴谱剔除垂直气流方法的研究[J].气象科技进展, 5 (4): 45-52. doi: 10.3969/j.issn.2095-1973.2015.04.005

    He Siyuan, Liu Xiaoyang, Sun Dali. 2015a. Research methods of removing vertical air motions on the retrieval of Raindrop Size Distribution (DSD) by precipitation doppler radar [J]. Advances in Meteorological Science and Technology (in Chinese), 5 (4): 45-52, doi: 10.3969/j.issn.2095-1973.2015.04.005.
    [14] 何思远, 刘晓阳, 孙大利, 等. 2015b.速度谱低端法在MRR反演雨滴谱中的应用研究.北京大学学报(自然科学版), 51 (3): 427-436. doi: 10.13209/j.0479-8023.2014.174

    He Siyuan, Liu Xiaoyang, Sun Dali, et al. 2015b. The implementation about the method of low-bound velocity spectrum reduce errors in MRR retrieval [J]. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 51 (3): 427-436, doi: 10.13209/j.0479-8023.2014.174.
    [15] Islam T, Rico-Ramirez M A, Thurai M, et al. 2012. Characteristics of raindrop spectra as normalized gamma distribution from a JossWaldvogel disdrometer [J]. Atmospheric Research, 108: 57-73, doi: 10.1016/j.atmosres.2012.01.013.
    [16] 贾星灿, 牛生杰. 2008.空中、地面雨滴谱特征的观测分析[J].南京气象学院学报, 31 (6): 865-870. doi: 10.3969/j.issn.1674-7097.2008.06.015

    Jia Xingcan, Niu Shengjie. 2008. Observational analysis of raindrop size distributions measured at surface and cloud [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 31 (6): 865-870, doi: 10.3969/j.issn.1674-7097.2008.06.015.
    [17] Kirankumar N V P, Kunhikrishnan P K. 2013. Evaluation of performance of Micro Rain Radar over the tropical coastal station Thumba (8.5°N, 76.9°E) [J]. Atmospheric Research, 134: 56-63, doi:10.1016/j.atmosres. 2013.07.018.
    [18] 李宗飞, 肖辉, 姚振东, 等. 2015.X波段双偏振雷达反演雨滴谱方法研究[J].气候与环境研究, 20 (3): 285-295. Li Zongfei, Xiao Hui, Yao Zhendong, et al. 2015. Retrieval of raindrop size distribution by X-band dual-polarization radar [J]. Climatic and Environmental Research (in Chinese), 20 (3): 285-295, doi: 10.3878/j.issn.1006-9585.2014.14021.
    [19] 刘红燕, 雷恒池. 2006.基于地面雨滴谱资料分析层状云和对流云降水的特征[J].大气科学, 30 (4): 693-702. doi: 10.3878/j.issn.1006-9895.2006.04.14

    Liu Hongyan, Lei Hengchi. 2006. Characteristics of rain from stratiform versus convective cloud based on the surface raindrop data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30 (4): 693-702, doi:10.3878/j.issn.1006-9895. 2006.04.14.
    [20] 刘黎平, 谢蕾, 崔哲虎. 2014.毫米波云雷达功率谱密度数据的检验和在弱降水滴谱反演中的应用研究[J].大气科学, 38 (2): 223-236. doi: 10.3878/j.issn.1006-9895.2013.12207

    Liu Liping, Xie Lei, Cui Zhehu. 2014. Examination and application of Doppler spectral density data in drop size distribution retrieval in weak precipitation by cloud radar [J]. Chinese Journal of Atmospheric Sciences(in Chinese), 38 (2): 223-236, doi: 10.3878/j.issn.1006-9895.2013.12207.
    [21] Löffler-Mang M, Kunz M, Schmid W. 1999. On the performance of a low-cost K-band Doppler radar for quantitative rain measurements [J]. J. Atmos. Oceanic Technol., 16 (3): 379-387, doi:10.1175/1520-0426(1999) 016 < 0379:OTPOAL > 2.0.CO; 2.
    [22] Maki M, Keenan T D, Sasaki Y, et al. 2001. Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia [J]. J. Appl. Meteor., 40 (8): 1393-1412, doi:10.1175/1520-0450(2001)040 < 1393:COTRSD > 2.0.CO; 2.
    [23] Marshall J S, Palmer W M. 1948. The distribution of raindrops with size [J]. Journal of Atmospheric Sciences, 5 (4): 165-166, doi:10.1175/1520-0469(1948)005 < 0165:TDORWS > 2.0.CO; 2.
    [24] Muller C L, Kidd C, Fairchild I J, et al. 2010. Investigation into clouds and precipitation over an urban area using Micro Rain Radars, satellite remote sensing and fluorescence spectrophotometry [J]. Atmospheric Research, 96 (2-3): 241-255, doi: 10.1016/j.atmosres.2009.08.003.
    [25] 牛生杰, 安夏兰, 桑建人. 2002.不同天气系统宁夏夏季降雨谱分布参量特征的观测研究[J].高原气象, 21 (1): 37-44. doi: 10.3321/j.issn:1000-0534.2002.01.007

    Niu Shengjie, An Xialan, Sang Jianren. 2002. Observational research on physical feature of summer rain dropsize distribution under synoptic systems in Ningxia [J]. Plateau Meteorology (in Chinese), 21 (1): 37-44, doi: 10.3321/j.issn:1000-0534.2002.01.007.
    [26] Niu S J, Jia X C, Sang J R, et al. 2010. Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains [J]. Journal of Applied Meteorology and Climatology, 49 (4):632-645, doi: 10.1175/2009JAMC2208.1.
    [27] Peters G, Fischer B, Andersson T. 2002. Rain observations with a vertically looking Micro Rain Radar (MRR) [J]. Boreal Environment Research, 7(4): 353-362. http://www.utsa.edu/LRSG/Teaching/GEO6011/Rain%20observations%20with%20vertically%20looking%20Micro%20Rain%20Radar%20(MRR).pdf
    [28] Peters, G., Fischer, B., Munster, H., et al. 2005. Profiles of raindrop size distributions as retrieved by Micro Rain Radars [J]. Journal of Applied Meteorology, 44 (12): 1930-1949 doi: 10.1175/JAM2316.1
    [29] Prat O P, Barros A P. 2010. Ground observations to characterize the spatial gradients and vertical structure of orographic precipitation—Experiments in the inner region of the Great Smoky Mountains [J]. J. Hydrol., 391(1-2): 141-156, doi: 10.1016/j.jhydrol.2010.07.013.
    [30] 阮征. 2015. 基于雷达资料的降水云微物理参数反演及垂直结构研究[D]. 中国气象科学研究院博士学位论文, 153pp. http://cdmd.cnki.com.cn/Article/CDMD-85101-1015305947.htm

    Ruan Zheng. 2015. Microphysical characteristics and vertical structure of precipitation from radar observations [D]. Ph. D. dissertation (in Chinese), Chinese Academy of Meteorological Sciences, 153pp. http://cdmd.cnki.com.cn/Article/CDMD-85101-1015305947.htm
    [31] 盛裴轩, 毛节泰, 李建国, 等. 2003.大气物理学[M].北京:北京大学出版社, 307pp.

    Sheng Peixuan, Mao Jietai, Li Jianguo, et al. 2003. Physics of Atmosphere [M] (in Chinese). Beijing: Peking University Press, 307pp.
    [32] Tridon F, Van Baelen J, Pointin Y. 2011. Aliasing in Micro Rain Radar data due to strong vertical winds [J]. Geophys. Res. Lett., 38 (2): L02804, doi: 10.1029/2010GL046018.
    [33] 魏伟, 叶鑫欣, 王海霞, 等. 2015.飞机测风资料在大气边界层研究中的应用[J].北京大学学报(自然科学版), 51 (1): 24-34. doi: 10.13209/j.0479-8023.2014.146

    Wei Wei, Ye Xinxin, Wang Haixia, et al. 2015. Application of aircraft wind data in the study of atmospheric boundary layer [J]. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 2015, 51 (1): 24-34, doi: 10.13209/j.0479-8023.2014.146.
    [34] 温龙, 刘溯, 赵坤, 等. 2015.两次降水过程的微降雨雷达探测精度分析[J].气象, 41 (5): 577-587. doi: 10.7519/j.issn.1000-0526.2015.05.006

    Wen Long, Liu Su, Zhao Kun, et al. 2015. Precision evaluation of Micro Rain Radar observation in two precipitation events [J]. Meteorological Monthly (in Chinese), 41 (5): 577-587, doi: 10.7519/j.issn.1000-0526.2015.05.006.
    [35] Wen L, Zhao K, Zhang G F, et al. 2016. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data [J]. J. Geophys. Res., 121 (5): 2265-2282, doi:10.1002/ 2015JD024160.
    [36] 吴林林. 2014. 利用雨滴谱对移动双偏振雷达进行质量控制及降水估测[D]. 南京信息工程大学博士学位论文, 151pp. http://cdmd.cnki.com.cn/Article/CDMD-10300-1016063912.htm

    Wu Linlin. 2014.Application study of mobile C-band dual-polarization radar quality control and QPE using raindrop size distribution [D]. Ph. D. dissertation(in Chinese), Nanjing University of Information Science and Technology, 151pp. http://cdmd.cnki.com.cn/Article/CDMD-10300-1016063912.htm
    [37] 杨加艳, 肖辉, 肖稳安, 等. 2010.基于SATP和SIFT方法分析雨滴谱特征及参数关系[J].高原气象, 29 (2): 486-497. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX201010006025.htm

    Yang Jiayan, Xiao Hui, Xiao Wen'an, et al. 2010. A study of raindrop size distributions and their characteristic parameters based on the methods of SATP and SIFT [J]. Plateau Meteorology (in Chinese), 29 (2): 486-497. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX201010006025.htm
    [38] 周黎明, 王庆, 龚佃利, 等. 2015.山东一次暴雨过程的云降水微物理特征分析[J].气象, 41 (2): 192-199. doi: 10.7519/j.issn.1000-0526.2015.02.007

    Zhou Liming, Wang Qing, Gong Dianli, et al. 2015. Microphysical properties of cloud and precipitation during a rainstorm process in Shandong Province [J]. Meteorological Monthly (in Chinese), 41 (2): 192-199, doi:10.7519/j.issn.1000-0526. 2015.02.007.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1144
  • HTML全文浏览量:  8
  • PDF下载量:  2160
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-29
  • 网络出版日期:  2016-11-16
  • 刊出日期:  2017-07-20

目录

    /

    返回文章
    返回