高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2013年“苏力”台风西行登陆引发闽南大暴雨成因的模拟研究

赵玉春 王叶红

赵玉春, 王叶红. 2013年“苏力”台风西行登陆引发闽南大暴雨成因的模拟研究[J]. 气候与环境研究, 2017, 22(3): 365-380. doi: 10.3878/j.issn.1006-9585.2017.16181
引用本文: 赵玉春, 王叶红. 2013年“苏力”台风西行登陆引发闽南大暴雨成因的模拟研究[J]. 气候与环境研究, 2017, 22(3): 365-380. doi: 10.3878/j.issn.1006-9585.2017.16181
Yuchun ZHAO, Yehong WANG. A Numerical Investigation of the Formation Mechanism for the Extremely Heavy-Rain Event in Southern Fujian Induced by Westward-Moving Typhoon Soulik in 2013[J]. Climatic and Environmental Research, 2017, 22(3): 365-380. doi: 10.3878/j.issn.1006-9585.2017.16181
Citation: Yuchun ZHAO, Yehong WANG. A Numerical Investigation of the Formation Mechanism for the Extremely Heavy-Rain Event in Southern Fujian Induced by Westward-Moving Typhoon Soulik in 2013[J]. Climatic and Environmental Research, 2017, 22(3): 365-380. doi: 10.3878/j.issn.1006-9585.2017.16181

2013年“苏力”台风西行登陆引发闽南大暴雨成因的模拟研究

doi: 10.3878/j.issn.1006-9585.2017.16181
基金项目: 

国家自然科学基金项目 41675047

国家自然科学基金项目 41405106

厦门市科技惠民计划项目 3502Z20164080

灾害天气国家重点实验室项目 2014LASW-A05

详细信息
    作者简介:

    赵玉春, 男, 1971年出生, 博士, 主要从事暴雨形成机理与预测方法、中尺度动力学和中尺度数值模拟研究。E-mail: zhaoych@cma.gov.cn

  • 中图分类号: P458.3

A Numerical Investigation of the Formation Mechanism for the Extremely Heavy-Rain Event in Southern Fujian Induced by Westward-Moving Typhoon Soulik in 2013

Funds: 

National Natural Science Foundation of China 41675047

National Natural Science Foundation of China 41405106

Xiamen People-Benefit Scientific Program 3502Z20164080

Key Program of State Key Laboratory of Severe Weather 2014LASW-A05

  • 摘要: 利用中尺度数值模式对2013年7月13~14日“苏力”台风引发福建南部大暴雨的天气过程进行了数值模拟、诊断分析和敏感性试验。结果发现:台风环流内强的正差动涡度平流和强的低层暖平流叠置是台风对流暴雨形成的有利大尺度强迫环境。台风登陆后移动旋转过程中,其风场、假相当位温场(θse)、水汽场、对流有效位能(CAPE)、对流不稳定度的空间结构及其正相对涡度、辐合区随着台风旋转在不断发生变化,台风环流内高θse和高比湿气团的影响、带有CAPE气流的输入、低层气流汇合或风速辐合、对流不稳定以及局地地形强迫等共同作用是闽南大暴雨发生的主要原因,强降水区主要位于环境风垂直切变的下游和左侧。此西移经台湾北侧的台风个例中,台湾地形可能主要通过改变台风环流内降水及其非绝热加热分布,进而影响台风的结构和移动路径,最终影响台风暴雨的强度和落区。闽南局地地形在台风大暴雨的形成中起到了一定的增幅作用,海陆摩擦差异造成的风速辐合在台风移近到登陆阶段对台风北侧偏东气流内降水具有不可忽视的增幅作用。
  • 图  1  2013年7月12日20:00至14日08:00 3 h间隔的台风移动路径(实线)和14日08:00观测的24 h累积降水量(阴影)(图中1220代表 12日20:00,其它依此类推)

    Figure  1.  The typhoon moving path (solid line) at 3-h interval from 2000 LST 12 Jul to 0800 LST 14 Jul 2013 and 24-h accumulated rainfall (shaded) observed at 0800 LST 14 Jul 2013 (1220 indicates 2000 LST 12 Jul, hereafter the same)

    图  2  2013年7月13日20:00(a)500 hPa位势高度(等值线,单位:dagpm)和500 hPa与850 hPa差动涡度平流(阴影,单位:10–9 s–2)、(b)100 hPa位势高度(等值线,单位:dagpm)和辐散场(阴影,单位:10–5 s–1)、(c)700 hPa风场(风矢)和暖平流(阴影,单位:K d–1)以及(d)850 hPa风场(风矢)、假相当位温(等值线,单位:K)和辐合场(阴影,单位:10–5 s–1)(图中矩形区域为暴雨区)

    Figure  2.  (a) 500-hPa geopotential height (contours, units: dagpm) and differential vorticity advection between 850 hPa and 500 hPa (shaded, units: 10–9 s–2), (b) 100-hPa geopotential height (contours, units: dagpm) and divergence (shaded, units: 10–5 s–1), (c) 700-hPa wind (vectors) and warm advection (shaded, units: K d–1) and (d) 850-hPa wind (vectors), pseudo equivalent potential temperature (contours, units: K), and convergence (shaded, units: 10–5 s–1) on 2000 LST 13 Jul 2013 (the rectangle shows the heavy rainfall area)

    图  3  观测和模拟的2013年7月(a)12日20:00至14日08:00台风路径和(b)14日08:00 24 h累积降水量(a中红/蓝实线为3 h间隔观测/模拟路径,阴影为地形高度,数字1220代表 12日20:00,其它依此类推;b中实线为观测降水,等值线间隔为10、25、50、75、100、150、200 mm,阴影为模拟降水,矩形A、B分别代表闽西南和闽东南的大暴雨区,下图同)

    Figure  3.  (a) Observed and simulated typhoon tracks from 2000 LST 12 Jul to 0800 LST 14 Jul 2013 and (b) 24-h accumulated rainfall at 0800 LST 14 Jul (in Fig. 3a, the red/blue solid line indicates the observed/simulated typhoon track at 3-h interval, shadings are topographic heights, the number 1220 represents 2000 LST 12 Jul, and similar for other numbers. In Fig. 3b, the solid lines show the observed rainfall at intervals of 10, 25, 50, 75, 100, 150, and 200 mm, shaded areas show simulated rainfall, the rectangles A and B indicate heavy rain areas in the southwest and southeast of Fujian Province, respectively. The same hereafter)

    图  4  观测和模拟的2013年7月13日08:00至14日08:00大暴雨区平均逐小时降水(红色粗实线/细虚线分别为图 3b中A区观测/模拟的降水,蓝色圆圈粗虚线/细虚线分别为图 3b中B区观测/模拟的降水)

    Figure  4.  Evolution of observed and simulated hourly rainfall averaged over heavy rain areas from 0800 LST 13 Jul to 0800 LST 14 Jul 2013 (the red thick-solid/thin-dashed line indicates the observed/simulated rainfall over area A shown in Fig. 3b, the blue circled thick-dashed/thin-dashed line displays rainfall over area B shown in Fig. 3b)

    图  5  模拟的2013年7月13日14:00(左列)和14日00:00(右列)850 hPa风场(风矢)与(a、b)假相当位温(阴影)以及(c、d)CAPE(阴影)分布

    Figure  5.  Simlated 850-hPa wind (vectors), (a, b) pseudo equivalent potential temperature (shaded) and (c, d) CAPE (shaded) at 1400 LST 13 Jul (left panel) and 0000 LST 14 Jul (right panel) 2013

    图  6  模拟的2013年7月13日14:00(左列)和14日00:00(右列)850 hPa风场(风矢)与(a、b)全风速(阴影)以及(c、d)辐合(阴影)分布

    Figure  6.  Simlated 850-hPa wind (vectors), (a, b) wind speed (shaded) and (c, d) convergence (shaded) at 1400 LST 13 Jul (left panel) and 0000 LST 14 Jul (right panel) 2013

    图  7  模拟的2013年7月13日14:00(左列)和14日00:00(右列)(a、b)200和850 hPa的风矢差(风矢)和比湿(阴影)分布,以及(c、d)925~800 hPa平均的对流不稳定度( $\partial {\theta _{{\rm{se}}}}/\partial p$ ,阴影)、1 h降水量(等值线,单位:mm)与环境风矢差(风标,如图台风中心250 km半径内200和850 hPa平均风矢差)

    Figure  7.  Simlated wind difference between (a, b) 200 and 850 hPa (vectors) and specific humidity (shaded) and (c, d) convective instability averaged over 925–800 hPa ( $\partial {\theta _{{\rm{se}}}}/\partial p$ , shaded), 1-h rainfall (contours, units: mm) and environmental wind difference (wind barbs, wind difference between 200 and 850 hPa averaged in a typhoon-centered circular area with 250-km radius) at 1400 LST 13 Jul (left panel) and 0000 LST 14 Jul (right panel) 2013, respectively

    图  8  模拟的2013年7月13日08:00至14日08:00(a)暴雨区A和(b)暴雨区B平均的涡度差动平流(VOR,单位:10–7 m s–2)、低层温度平流(T_ADV,单位:K h–1)、地形强迫抬升(TOPO,单位:10–1 m s–1)、低层辐合(DIV,单位:10–4 s–1)以及925~800 hPa对流不稳定度[CIS,单位:K (50 hPa)–1]的演变

    Figure  8.  Evolution of simulated differential vorticity advection (VOR, units: 10–7 m s–2), low-level temperature advection (T_ADV, units: K h–1), topographically forced updraft (TOPO, units: 10–1 m s–1), low-level convergence (DIV, units: 10–4 s–1) and 925–800 hPa mean convective instability [CIS, units: K (50 hPa)–1] averaged over the heavy rain areas (a) A and (b) B from 0800 LST 13 Jul to 0800 LST 14 Jul 2013

    图  9  模拟的2013年7月13日08:00至14日08:00暴雨区(a、b)A、(c、d)B和其东、西、南、北侧同等面积区域CAPE(左列)以及其东、西、南、北边界低层(850 hPa)平均风(右列)的演变(S、W、N、E分别代表南、西、北、东)

    Figure  9.  Simulated CAPE (left panel) averaged over the heavy rain areas (a, b) A and (c, d) B and their surrounding regions to the east, west, south, and north with the same area, and low-level (850-hPa) wind velocity (right panel) averaged over its east, west, south, and north boundaries from 0800 LST 13 Jul to 0800 LST 14 Jul 2013 (the characters of S, W, N, and E in the figure represent south, west, north, and east, respectively)

    图  10  试验(a、b)NOTW和(c、d)HDH模拟的台风路径(左列,红、蓝实线分别为试验CTL和NOTW/HDH模拟的台风路径,阴影为地形高度,1220代表 12日20:00,其它依此类推,矩形区域为暴雨区)以及2013年7月14日08:00 24 h累积降水量(右列,实线和阴影分别表示试验CTL和NOTW/HDH模拟的降水,等值线间隔为10、25、50、75、100、150、200 mm)

    Figure  10.  Simulated typhoon track (left panel, the red and blue solid lines indicate the simulated typhoon track by Expt CTL and Expt NOTW/HDH, respectively; shadings are topographic heights, the number 1220 represents 2000 LST 12 Jul, and the similar for other numbers; the rectangle shows the heavy rain area) and 24-h accumulated rainfall (right panel, the solid line and shaded area denote the simulated rainfall by Expt CTL and Expt NOTW/HDH, respectively, with contour intervals of 10, 25, 50, 75, 100, 150, and 200 mm) at 0800 LST 14 Jul 2013 by Expts (a, b) NOTW and (c, d) HDH

    图  11  不同试验模拟的2013年7月13日02:00至14日08:00台风中心海平面气压的演变

    Figure  11.  Simulated sea level pressure in the typhoon center by different experiments from 0200 LST 13 Jul to 0800 LST 14 Jul 2013

    图  12  试验(a)NOLT和(b)NOFRD模拟的2013年7月14日08:00 24h累积降水量(实线为CTL试验模拟的降水,等值线间隔为10、25、50、75、100、150、200 mm,阴影为NOLT和NOFRD试验模拟的降水)

    Figure  12.  Simulated 24-h rainfall at 0800 LST 14 Jul 2013 by Expt (a) NOLT and (b) NOFRD (the solid lines indicate the simulated rainfall by Expt CTL and the shaded areas show the simulated rainfall by Expts NOLT and NOFRD with contour intervals of 10, 25, 50, 75, 100, 150, and 200 mm)

    表  1  地形和降水非绝热加热作用敏感性试验的设计

    Table  1.   Sensitivity experiments for the impacts of topography and rainfall diabatic heating

    试验名称 试验设计 试验目的
    CTL 全模式物理过程、真实模式地形 再现台风登陆引发闽南大暴雨天气过程
    NOTW 移除台湾地形 探讨台湾地形对台风移动路径及暴雨强度和落区的影响
    HDH 台湾地区降水非绝热加热减半(在模式积分过程中将台风移经台湾时段台湾地区的降水非绝热加热减半) 探讨台湾地形降水增幅造成的非绝热加热增加对台风移动路径及暴雨强度和落区的影响
    NOLT 移除强降水区及其周边地区的局地地形 探讨强降水区局地地形强迫作用对强降水形成的影响
    NOFRD 移除陆地与水体间的摩擦差异(将陆地摩擦系数设置与海洋相同) 探讨海陆摩擦差异对台风暴雨强度和落区的影响
    下载: 导出CSV
  • [1] Chang S W J. 1982. The orographic effects induced by an island mountain range on propagating tropical cyclones[J]. Mon. Wea. Rev., 110(9):1255-1270, doi:10.1175/1520-0493(1982)110<1255:TOEIBA>2.0.CO;2.
    [2] 丁治英, 张兴强, 何金海, 等. 2001.非纬向高空急流与远距离台风中尺度暴雨的研究[J].热带气象学报, 17(2):144-152. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200102005.htm

    Ding Zhiying, Zhang Xingqiang, He Jinhai, et al. 2001. The study of storm rainfall caused by interaction between the non-zonal high level jet streak and the far distant typhoon[J]. Journal of Tropical Meteorology (in Chinese), 17(2):144-152. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200102005.htm
    [3] Dong M Y, Chen L S, Li Y, et al. 2010. Rainfall reinforcement associated with landfalling tropical cyclones[J]. J. Atmos. Sci., 67(11):3541-3558, doi: 10.1175/2010JAS3268.1.
    [4] 董美莹, 陈联寿, 程正泉, 等. 2011.地形影响热带气旋"泰利"降水增幅的数值研究[J].高原气象, 30(3):700-710. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201103018.htm

    Dong Meiying, Chen Lianshou, Cheng Zhengquan, et al. 2011. Numerical study of topography effect on rainfall reinforcement associated with tropical cyclone 'Talim'[J]. Plateau Meteorology (in Chinese), 30(3):700-710. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201103018.htm
    [5] 端义宏, 陈联寿, 梁建茵, 等. 2014.台风登陆前后异常变化的研究进展[J].气象学报, 72(5):969-986. doi: 10.11676/qxxb2014.085

    Duan Yihong, Chen Lianshou, Liang Jianyin, et al. 2014. Research progress in the unusual variations of typhoons before and after landfalling[J]. Acta Meteorologica Sinica (in Chinese), 72(5):969-986, doi: 10.11676/qxxb2014.085.
    [6] Grell G A, Dévényi D. 2002. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophys. Res. Lett., 29(14):38-1-38-4, doi: 10.1029/2002GL015311.
    [7] 贺海晏. 1995.台风移动规律的研究Ⅰ.非绝热加热与水平温度分布的影响[J].热带气象学报, 11(1):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX199503000.htm

    He Haiyan. 1995. A study on typhoon movement Ⅰ. The effect of diabatic heating and horizontal temperature distribution[J]. Journal of Tropical Meteorology (in Chinese), 11(1):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX199503000.htm
    [8] Huang Y H, Wu C C, Wang Y Q. 2011. The influence of island topography on typhoon track deflection[J]. Mon. Wea. Rev., 139(6):1708-1727, doi: 10.1175/2011MWR3560.1.
    [9] Iacono M J, Delamere J S, Mlawer E J, et al. 2008. Radiative forcing by long-lived greenhouse gases:Calculations with the AER radiative transfer models[J]. Journal of Geophysical Research:Atmosphere, 113(D13):1395-1400, doi: 10.1029/2008JD009944.
    [10] Janjić Z I. 1994. The step-mountain eta coordinate model:Further developments of the convection, viscous sublayer, and turbulence closure schemes[J]. Mon. Wea. Rev., 122:927-945, doi:10.1175/1520-0493(1994)122< 0927:TSMECM>2.0.CO;2.
    [11] Kuo H C, Williams R T, Chen J H, et al. 2001. Topographic effects on barotropic vortex motion:No mean flow[J]. J. Atmos. Sci., 58(10):1310-1327, doi:10.1175/1520-0469(2001)058<1310:TEOBVM>2.0.CO;2.
    [12] 李英, 陈联寿, 雷小途. 2006.高空槽对9711号台风变性加强影响的数值研究[J].气象学报, 64(5):552-563. doi: 10.11676/qxxb2006.054

    Li Ying, Chen Lianshou, Lei Xiaotu. 2006. Numerical study on impacts of upper-level westerly trough on the extratropical transition process of Typhoon Winnie (1997)[J]. Acta Meteorologica Sinica (in Chinese), 64(5):552-563, doi: 10.11676/qxxb2006.054.
    [13] Li Y, Chen L, Qian C, et al. 2010. Study on formation and development of a mesoscale convergence line in typhoon rananim[J]. Acta Meteorologica Sinica, 24(4):413-425. http://mall.cnki.net/magazine/Article/QXXW201004003.htm
    [14] 梁军, 陈联寿, 张胜军, 等. 2008.冷空气影响辽东半岛热带气旋降水的数值试验[J].大气科学, 32(5):1107-1118. doi: 10.3878/j.issn.1006-9895.2008.05.10

    Liang Jun, Chen Lianshou, Zhang Shengjun, et al. 2008. Numerical study of impact of cold air on rainfall of tropical cyclone over Liaodong Peninsula[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(5):1107-1118, doi: 10.3878/j.issn.1006-9895.2008.05.10.
    [15] Lin Y L, Han J, Hamilton D W, et al. 1999. Orographic influence on a drifting cyclone[J]. J. Atmos. Sci., 56(4):534-562, doi:10.1175/1520-0469(1999)056<0534:OIOADC>2.0.CO;2.
    [16] 林小红, 任福民, 刘爱鸣, 等. 2008.近46年影响福建的台风降水的气候特征分析[J].热带气象学报, 24(4):411-416. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200804017.htm

    Lin X H, Ren F M, Liu A M, et al. 2008. Climatic variation features of typhoon precipitation influencing Fujian for the past 46 years[J]. Journal of Tropical Meteorology (in Chinese), 24(4):411-416. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200804017.htm
    [17] 林小红, 刘爱鸣, 刘通易, 等. 2015. 2013年"苏力"与"潭美"相似路径台风大暴雨落区差异分析[J].热带气象学报, 31(4):517-525. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201504009.htm

    Lin Xiaohong, Liu Aiming, Liu Tongyi, et al. 2015. An analysis on different heavy rain areas with two typhoons Trami and Soulik with similar tracks during 2013[J]. Journal of Tropical Meteorology (in Chinese), 31(4):517-525. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201504009.htm
    [18] 钮学新, 杜惠良, 刘建勇. 2005. 0216号台风降水及其影响降水机制的数值模拟试验[J].气象学报, 63(1):57-68. doi: 10.11676/qxxb2005.007

    Niu Xuexin, Du Huiliang, Liu Jianyong. 2005. The numerical simulation of rainfall and precipitation mechanism associated with typhoons Sinlaku (0216)[J]. Acta Meteorologica Sinica (in Chinese), 63(1):57-68. doi: 10.11676/qxxb2005.007
    [19] Tang X D, Yang M J, Tan Z M. 2012. A modeling study of orographic convection and mountain waves in the landfalling Typhoon Nari (2001)[J]. Quart. J. Roy. Meteor. Soc., 138(663):419-438, doi: 10.1002/qj.933.
    [20] Thompson G, Field P R, Rasmussen R M, et al. 2008. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part Ⅱ:Implementation of a new snow parameterization[J]. Mon. Wea. Rev., 136(12):5095-5115, doi: 10.1175/2008MWR2387.1.
    [21] 魏应植, 吴陈锋, 孙旭光. 2006.福建台风灾害特征及其防御对策研究[J].海洋科学, 30(10):7-14. doi: 10.3969/j.issn.1000-3096.2006.10.003

    Wei Yingzhi, Wu Chenfeng, Sun Xuguang. 2006. Characteristics of landfall typhoon in Fujian Province and its defending research[J]. Marine Sciences (in Chinese), 30(10):7-14. doi: 10.3969/j.issn.1000-3096.2006.10.003
    [22] Wu C C, Emanuel K A. 1993. Interaction of a baroclinic vortex with background shear:Application to hurricane movement[J]. J. Atmos. Sci., 50(1):62-76, doi:10.1175/1520-0469(1993)050<0062:IOABVW>2.0.CO;2.
    [23] Wu C C, Kuo Y H. 1999. Typhoons affecting Taiwan:Current understanding and future challenges[J]. Bull. Amer. Meteor. Soc., 80(1):67-80, doi:10.1175/1520-0477(1999)080<0067:TATCUA>2.0.CO;2.
    [24] Yang M J, Zhang D L, Huang H L. 2008. A modeling study of typhoon Nari(2001) at landfall. Part Ⅰ:Topographic effects[J]. J. Atmos. Sci., 65(10):3095-3115. doi: 10.1175/2008JAS2453.1
    [25] Yu Z F, Yu H, Gao S T. 2010. Terrain impact on the precipitation of landfalling Typhoon Talim[J]. Journal of Tropical Meteorology, 16(2):115-124. https://www.researchgate.net/publication/290171821_Terrain_impact_on_the_precipitation_of_landfalling_typhoon_Talim
    [26] 岳彩军. 2009. "海棠"台风降水非对称分布特征成因的定量分析[J].大气科学, 33(1):51-70. doi: 10.3878/j.issn.1006-9895.2009.01.05

    Yue Caijun. 2009. A quantitative study of asymmetric characteristic genesis of precipitation associated with Typhoon Haitang[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(1):51-70, doi: 10.3878/j.issn.1006-9895.2009.01.05.
    [27] 郑庆林, 吴军, 蒋平. 1996.我国东南海岸线分布对9216号台风暴雨增幅影响的数值研究[J].热带气象学报, 12(4):304-313. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX604.002.htm

    Zheng Qinglin, Wu Jun, Jiang Ping. 1996. Numerical study on the effect of the distribution of the southeast sealine of China on the amplifying of the torrential rain of the landing typhoon 9216[J]. Journal of Tropical Meteorology (in Chinese), 12(4):304-313. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX604.002.htm
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1242
  • HTML全文浏览量:  0
  • PDF下载量:  2504
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-27
  • 网络出版日期:  2017-01-20
  • 刊出日期:  2017-05-20

目录

    /

    返回文章
    返回