Characteristics of Extreme Precipitation and Associated Anomalous Circulations over Eastern China during Boreal Summer
-
摘要: 主要利用1961~2014年中国东部地区438个台站的逐日降水资料和NCEP/NCAR的再分析资料,从大气内部动力角度对夏季不同极端降水情况下的环境场进行分析,结果表明:对长江中下游地区而言,在极端降水频次偏多年时,850 hPa风场及整层水汽输送距平场均表明东亚夏季风偏弱,有利于更多的水汽输送到长江中下游地区,500 hPa鄂霍次克海阻塞高压持续日数偏多,有利于冷空气南下,200 hPa东亚副热带急流偏南,且30°N以南偏西风异常有利于辐散,而在斜压波包从西北东南向传播为极端降水事件分发生集聚了能量;对华北地区极端降水频次偏多年而言,850 hPa风场及整层的水汽输送距平场均表明东亚夏季风偏强,有利于更多的水汽输送到华北地区,500 hPa高度距平场日本海正距平,贝加尔湖蒙古地区为负距平,华北地区东高西低,200 hPa东亚副热带急流偏北,从而导致我国华北地区极端降水频次偏多,能量传播也为西北东南向。这些结果表明极端降水的变化,与大气内部的动力作用和能量的传播有密切的关系。Abstract: Anomalous circulations associated with various extreme precipitation events in summer are investigated from the perspective of atmosphere dynamics using daily precipitation data collected at 438 stations from 1961 to 2014 in eastern China and the NCEP/NCAR reanalysis data. The results demonstrate that in the middle and lower reaches of the Yangtze River, increases in the frequency of extreme precipitation always correspond to weaker than normal East Asian summer monsoon, which is reflected in abnormal 850-hPa wind field and water vapor flux that are favorable for more water vapor transport to the middle and lower reaches of Yangtze River. At 500 hPa, a blocking high persists over the Okhotsk Sea, which is conductive to the cold air moving southward. The East Asian subtropical westerly jet anomalously moves southward at 200 hPa, while the westerly wind anomalies to the south of 30°N promotes divergence development, and the wave activity fluxes are favorable for generating and maintaining wave perturbations in this region. In North China, corresponding to increases in the frequency of extreme precipitation, anomalies of 850-hPa wind field and water vapor flux indicate that the East Asian summer monsoon is stronger than normal, which strengths the water vapor transport to North China. The positive anomaly is located over the Sea of Japan and the negative anomalies are located over Mongolia, Baikal and their vicinity at 500 hPa. East Asian subtropical westerly jet abnormally shifts northward at 200 hPa, while the wave activity fluxes are also favorable for generating and maintaining wave perturbations in this region. All the above results suggest that the occurrence of extreme summer precipitation in East China is closely associated with atmospheric dynamics and energy transmission.
-
Key words:
- Extreme precipitation events /
- Anomalous circulation /
- Wave activity flux
-
图 2 1961~2014年夏季长江中下游地区极端降水频次偏多年(偏少年)(a、d)850 hPa风场、(b、e)500 hPa高度场和(c、f)200 hPa纬向风场与气候态差值场(距平场)的分布(红色的点代表通过95%置信水平检验):(a、b、c)极端降水频次偏多年;(d、e、f)极端降水频次偏少年
Figure 2. (a, d) 850-hPa wind anomalies, (b, e) 500-hPa height anomalies, and (c, f) 200-hPa zonal wind anomalies corresponding to increase (decrease) in the frequency of extreme precipitation over the middle and lower reaches of the Yangtze River in summer: (a, b, c) Years with the frequency of extreme precipitation increased; (d, e, f) years with the frequency of extreme precipitation declined. Red dots represent 95% confidence level
图 4 1961~2014年夏季整层(1000~300 hPa)水汽通量输送(a)流函数(等值线,单位:106 kg s-1)和非辐散分量(矢量)以及(b)势函数(等值线,单位:106 kg s-1)和辐散分量(矢量)分布
Figure 4. (a) Distribution of integrated stream function (contour, units: 106 kg s-1) and the non-divergent component (vector) of water vapor transport, and (b) distribution of integrated potential function (contour, units: 106 kg s-1) and the divergent component (vector) of water vapor transport in summer during 1961-2014
图 5 1961~2014年夏季长江中下游极端降水频次偏多年(偏少年)整层(1000~300 hPa)水汽通量输送(a、c)流函数(等值线,单位:106 kg s−1)和非辐散分量(矢量)以及(b、d)势函数(等值线,单位:106 kg s−1)及辐散分量距平分布(图中红框表示长江中下游):(a、b)极端降水频次偏多年;(c、d)极端降水频次偏少年
Figure 5. (a, c) Anomalous distribution of integrated stream function (contour, units: 106 kg s−1) and the non-divergent component (vector) of water vapor transport, and (b, d) anomalous distribution of integrated potential function (contour, units: 106 kg s−1) and the divergent component (vector) of water vapor transport corresponding to increase (decrease) in the frequency of extreme precipitation during 1961-2014 over the middle and lower reaches of the Yangtze River in summer (the red box indicates the area of the middle and lower reaches of Yangtze River): (a, b) Years with the frequency of extreme precipitation increased; (c, d) years with the frequency of extreme precipitation declined
图 6 1961~2014年夏季长江中下游极端降水频次偏多年(偏少年)对流层中上层(a、c)500 hPa、(b、d)200 hPa扰动流函数(等值线,单位:105m2s)和波作用通量(矢量):(a、b)极端降水频次偏多年;(c、d)极端降水频次偏少年
Figure 6. Composites of the wave-activity flux (vector) and quasi-geostrophic steam function (contour, units: 105 m2s) at (a, c) 500 hPa and (b, d) 200 hPa corresponding to increase (decrease) in the frequency extreme precipitation during 1961-2014 over the middle and lower reaches of the Yangtze River in summer: (a, b) Years with the frequency of extreme precipitation increased; (c, d) years with the frequency of extreme precipitation declined
-
[1] Alexander L V, Zhang X, Peterson T C, et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation[J]. J. Geophys. Res., 111 (D5):D05109, doi: 10.1029/2005JD006290. [2] Bonsal B R, Zhang X, Vincent L A, et al. 2001. Characteristics of daily and extreme temperatures over Canada[J]. J. Climate, 14 (9):1959-1976, doi:10.1175/1520-0442(2001)014 < 1959:CODAET>2.0.CO; 2. [3] Bracken C, Rajagopalan B, Alexander M A, et al. 2015.Spatial variability of seasonal extreme precipitation in the western United States[J]. J. Geophys. Res., 120 (10):4522-4533, doi: 10.1002/2015JD023205. [4] 陈海山, 范苏丹, 张新华. 2009.中国近50a极端降水事件变化特征的季节性差异[J].大气科学学报, 32 (6):744-751. doi: 10.3969/j.issn.1674-7097.2009.06.003Chen Haishan, Fan Sudan, Zhang Xinhua. 2009. Seasonal differences of variation characteristics of extreme precipitation events over China in the last 50 years[J]. Transactions of Atmospheric Sciences (in Chinese), 32 (6):744-751, doi: 10.3969/j.issn.1674-7097.2009.06.003. [5] Chen T C. 1985.Global water vapor flux and maintenance during FGGE[J]. Mon. Wea. Rev., 113 (10):1801-1819, doi:10.1175/1520-0493(1985) 113 < 1801:GWVFAM>2.0.CO; 2. [6] 丁一汇, 刘月贞. 1986. 7507号台风中水汽收支的研究[J].海洋学报, 8 (3):291-301. https://hanspub.org/reference/Reference.aspx?ReferenceID=142251Ding Yihui, Liu Yuezhen. 1986. Study of water vapor budget on typhoon 7507[J]. ActaOceanologicaSinica (in Chinese), 8 (3):291-301 https://hanspub.org/reference/Reference.aspx?ReferenceID=142251 [7] 董蕾, 张明军, 王圣杰, 等. 2014.基于格点数据的西北干旱区极端降水事件分析[J].自然资源学报, 29 (12):2048-2057. doi: 10.11849/zrzyxb.2014.12.006Dong Lei, Zhang Mingjun, Wang Shengjie, et al. 2014. Extreme precipitation events in arid areas in Northwest China based on gridded data[J]. Journal of Natural Resources (in Chinese), 29 (12):2048-2057, doi:10.11849/zrzyxb.2014. 12.006. [8] Dong Q, Chen X, Chen T X. 2011.Characteristics and changes of extreme precipitation in the Yellow-Huaihe and Yangtze-Huaihe rivers basins, China[J]. J. Climate, 24 (14):3781-3795, doi: 10.1175/2010JCLI3653.1. [9] Duan W L, He B, Takara K, et al. 2015. Changes of precipitation amounts and extremes over Japan between 1901 and 2012 and their connection to climate indices[J]. Climate Dyn., 45 (7-8):2273-2292, doi: 10.1007/s00382-015-2778-8. [10] 管兆勇, 任国玉. 2012.中国区域极端天气气候事件变化研究[M].北京:气象出版社, 347pp. Guan Zhaoyong, RenGuoyu. 2012.On Variationsof Weather and Climate Extremes in China (in Chinese)[M]. Beijing:China Meteorological Press, 347pp. [11] 黄荣辉, 刘永, 冯涛. 2013. 20世纪90年代末中国东部夏季降水和环流的年代际变化特征及其内动力成因[J].科学通报, 58 (8):617-628. doi: 10.1007/s11434-012-5545-9Huang Ronghui, Liu Yong, Feng Tao. 2013. Interdecadal change of summer precipitation over Eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes[J]. Chinese Science Bulletin, 58 (12):1339-1349, doi: 10.1007/s11434-012-5545-9. [12] IPCC. 2001. Climate change 2001: The science of climate change[C]//Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Houghton J T, Ding Y, Griggs D J, et al, Eds. Cambridge, UK and New York, USA: Cambridge University Press, 156-159. [13] IPCC. 2007. Climate change 2007: The physical science basis[C]//Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon S, Qin D, Manning M, et al, Eds. Cambridge, Cambridge University Press, 710-719. [14] Jun T, Munasinghe L, Rind D H. 2015. A new metric for Indian monsoon rainfall extremes[J]. J. Climate, 28 (7):2842-2855, doi: 10.1175/JCLI-D-13-00764.1. [15] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project[J]. Bull. Amer. Meteor. Soc., 77 (3):437-471, doi:10. 1175/1520-0477(1996)077 < 0437:TNYRP>2.0.CO; 2. [16] 柯丹, 管兆勇. 2014.华中地区夏季区域性极端日降水事件变化特征及环流异常[J].气象学报, 72 (3):478-493. doi: 10.11676/qxxb2014.037Ke Dan, Guan Zhaoyong. 2014. Regional mean daily precipitation extremes over central China during boreal summer and its relation with the anomalous circulation patterns[J]. Acta Geographica Sinica (in Chinese), 72 (3):478-493, doi: 10.11676/qxxb2014.037. [17] 况雪源, 张耀存. 2006.东亚副热带西风急流位置异常对长江中下游夏季降水的影响[J].高原气象, 25 (3):382-389. doi: 10.3321/j.issn.1000-0534-2006.03.004Kuang Xueyuan, Zhang Yaocun. 2006. Impact of the position abnormalities of East Asian subtropical westerly jet on summer precipitation in middle-lower reaches of Yangtze River[J]. Plateau Meteorology, 25(3):382-389, doi:10.3321/j. issn.1000-0534-2006.03.004. [18] 李威, 翟盘茂. 2009.中国极端强降水日数与ENSO的关系[J].气候变化研究进展, 5 (6):336-342. doi: 10.3969/j.issn.1673-1719.2009.06.004Li Wei, Zhai Panmao. 2009. Relationship between ENSO and frequency of extreme precipitation days in China[J]. Advances in Climate Change Research (in Chinese), 5 (6):336-342, doi: 10.3969/j.issn.1673-1719.2009.06.004. [19] Mao R, Gong D Y, Yang J, et al. 2011. Linkage between the Arctic Oscillation and winter extreme precipitation over central-southern China[J]. Climate Research, 50 (2-3):187-201, doi: 10.3354/cr01041. [20] 梅士龙, 管兆勇. 2008.对流层上层斜压波包活动与2003年江淮流域梅雨的关系[J].大气科学, 32 (6):1333-1340. doi: 10.3878/j.issn.1006-9895.2008.06.08Mei Shilong, Guan Zhaoyong. 2008. Activities of baroclinic wave packets in the upper troposphere related to Meiyu of 2003 in the Yangtze River and Huaihe River valley[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32 (6):1333-1340, doi: 10.3878/j.issn.1006-9895.2008.06.08. [21] 梅士龙, 管兆勇. 2009. 1998年长江中下游梅雨期间对流层上层斜压波包的传播[J].热带气象学报, 25 (3):300-306. doi: 10.3969/j.issn.1004-4965.2009.03.007Mei Shilong, Guan Zhaoyong. 2009. Propagation of baroclinic wave packets in upper troposphere during the Meiyu period of 1998 over middle and lower reaches of Yangtze River valley[J]. Journal of Tropical Meteorology (in Chinese), 25 (3):300-306, doi: 10.3969/j.issn.1004-4965.2009.03.007. [22] 任正果, 张明军, 王圣杰, 等. 2014. 1961-2011年中国南方地区极端降水事件变化[J].地理学报, 69 (5):640-649. doi: 10.11821/dlxb201405007RenZhengguo, Zhang Mingjun, Wang Shengjie, et al. 2014. Changes in precipitation extremes in South China during 1961-2011[J]. Acta Geographica Sinica (in Chinese), 69 (5):640-649, doi: 10.11821/dlxb201405007. [23] 施能, 黄先香, 杨扬. 2003. 1948~2000年全球陆地年降水量场趋势变化的时、空特征[J].大气科学, 27 (6):971-982. doi: 10.3878/j.issn.1006-9895.2003.06.02Shi Neng, Huang Xianxiang, Yang Yang. 2003. Spatiotemporal features of the trend variation of global land annual rainfall fields from 1948-2000[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27 (6):971-982, doi: 10.3878/j.issn.1006-9895.2003.06.02. [24] Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasi geostrophic eddies on a zonally varying basic flow[J]. J. Atmos. Sci., 58 (6):608-627, doi:10.1175/1520-0469(2001)058 < 0608:AFOAPI>2.0.CO; 2. [25] Tibaldi S, Molteni F. 1990. On the operational predictability of blocking[J]. Tellus A, 42 (3):343-365, doi: 10.3402/tellusa.v42i3.11882. [26] Wang B, Wu Z W, Li J P, et al. 2008.How to measure the strength of the East Asian summer monsoon[J]. J. Climate, 21 (17):4449-4463, doi:10. 1175/2008JCLI2183.1. [27] Wang Y Q, Zhou L. 2005. Observed trends in extreme precipitation events in China during 1961-2001 and the associated changes in large-scale circulation[J]. Geophys. Res. Lett., 32 (9):L09707, doi: 10.1029/2005GL022574. [28] 杨金虎, 江志红, 王鹏翔, 等. 2008.中国年极端降水事件的时空分布特征[J].气候与环境研究, 13 (1):75-83. doi: 10.3878/j.issn.1006-9585.2008.01.10Yang Jinhu, Jiang Zhihong, Wang Pengxiang, et al. 2008. Temporal and spatial characteristic of extreme precipitation event in China[J]. Climatic and Environmental Research (in Chinese), 13 (1):75-83, doi:10.3878/j.issn.1006-9585.2008. 01.10. [29] 杨溯, 李庆祥. 2014.中国降水量序列均一性分析方法及数据集更新完善[J].气候变化研究进展, 10 (4):276-281. doi: 10.3969/j.issn.1673-1719.2014.04.008Yang Su, Li Qingxiang. 2014. Improvement in homogeneity analysis method and update of China precipitation data[J]. Progressus Inquisitionesde Mutatione Climatis (in Chinese), 10 (4):276-281, doi: 10.3969/j.issn.1673-1719.2014.04.008 [30] 翟盘茂, 潘晓华. 2003.中国北方近50年温度和降水极端事件变化[J].地理学报, 58 (S):1-10. doi: 10.3321/j.issn:0375-5444.2003.z1.001Zhai Panmao, Pan Xiaohua. 2003. Change in extreme temperature and precipitation over northern China during the second half of the 20th century[J]. Acta Geographica Sinica (in Chinese), 58 (S):1-10, doi: 10.3321/j.issn:0375-5444.2003.z1.001. [31] 翟盘茂, 章国材. 2004.气候变化与气象灾害[J].科技导报, 22 (7):11-14. doi: 10.3321/j.issn:1000-7857.2004.07.004Zhai Panmao, Zhang Guocai. 2004. Climate change and meteorological disasters[J]. Science and Technology Review (in Chinese), 22 (7):11-14, doi: 10.3321/j.issn:1000-7857.2004.07.004. [32] 翟盘茂, 王萃萃, 李威. 2007.极端降水事件变化的观测研究[J].气候变化研究进展, 3 (3):144-148. doi: 10.3969/j.issn.1673-1719.2007.03.004Zhai Panmao, Wang Cuicui, Li Wei. 2007. A review on study of change in precipitation extremes[J]. Advances in Climate Change Research (in Chinese), 3 (3):144-148, doi:10.3969/j.issn. 1673-1719.2007.03.004. [33] Zhai P M, Zhang X B, Wan H, et al. 2005. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. J. Climate, 18 (7):1096-1108, doi: 10.1175/JCLI-3318.1. [34] Zhang L, Sielmann F, Fraedrich K, et al. 2015. Variability of winter extreme precipitation in Southeast China:Contributions of SST anomalies[J]. Climate Dyn., 45 (9-10):2557-2570, doi: 10.1007/s00382-015-2492-6. [35] Zhang Q, Xu C Y, Zhang Z X, et al. 2008. Spatial and temporal variability of precipitation maxima during 1960-2005 in the Yangtze River basin and possible association with large-scale circulation[J]. J. Hydrol., 353 (3-4):215-227, doi: 10.1016/j.jhydrol.2007.11.023. [36] 张庆云, 郭恒. 2014.夏季长江淮河流域异常降水事件环流差异及机理研究[J].大气科学, 38 (4):656-669. doi: 10.3878/j.issn.1006-9895.1402.13240Zhang Qingyun, GuoHeng. 2014. Circulation differences in anomalous rainfall over the Yangtze River and Huaihe River valleys in summer[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (4):656-669, doi:10.3878/j.issn.1006-9895. 1402.13240. [37] 赵俊虎, 周杰, 叶天舒, 等. 2015. 2013年夏季中国北涝南旱环境场及异常成因分析[J].气象科技进展, 5 (5):14-23. doi: 10.3969/j.issn.2095-1973.2015.05.002ZhaoJunhu, Zhou Jie, Ye Tianshu, et al. 2015. Preliminary studies on the environment field and cause of northern flood and southern drought during the summer of 2013 in China[J]. Advances in Meteorological Science and Technology (in Chinese), 5 (5):14-23, doi: 10.3969/j.issn.2095-1973.2015.05.002. -