Capability Assessment of CMIP5 Models in Reproducing Observed Climatology and Decadal Changes in Summer Rainfall with Different Intensities over Eastern China
-
摘要: 利用东亚地区逐日降水资料,评估了17个CMIP5气候模式对中国东部夏季不同强度降水的时空分布、不同强度降水对1970年代末中国东部夏季总降水量年代际转折的贡献的模拟能力。从夏季不同强度降水占总降水的比重来看,在中国东北和华北地区,小雨和中雨占主导;而在华南和江淮地区,大雨和暴雨则相对更为重要。CMIP5模式可大致模拟出中国东部小雨、大雨和暴雨占总降水比重的空间分布,但对中雨占比的空间分布模拟较差。总体说来,多数CMIP5模式高估了小雨和中雨的比重,但低估了大雨和暴雨的比重,从而导致大多数模式高估东北和华北的总降水量,而低估华南和江淮的总降水量。对1970年代末我国华北和江淮地区夏季降水量的年代际转折,观测资料表明该转折主要体现为大雨和暴雨雨量的年代际转折;仅有少数CMIP5模式能模拟出华北大雨和暴雨年代际减少的特征,使得这些模式对华北地区总降水的年代际变化也有较好的模拟能力。对于江淮区域,由于大雨和暴雨的比重被严重低估,尽管部分模式能模拟出夏季总降水量年代际增加的特征,但却多以小雨、中雨的年代际变化为主。多模式集合并不能显著提高模式对不同强度降水的空间分布的模拟能力,尤其是降水年代际变化的模拟能力。Abstract: The capabilities of 17 CMIP5 models for simulating the intensity distribution of summer rainfall over eastern China are evaluated based on daily observational data. The decadal changes of rainfall with different intensities in the later 1970s and their relative contributions to the decadal change in total rainfall for both observation and model simulations are further analyzed and compared. Observations indicate that the total rainfall is mainly composed of light and medium rainfall over northern and northeastern China, while heavy rainfall account for a large proportion of the total rainfall over southern China and the Yangtze-Huai River basin (YHRB). In general, the CMIP5 models are able to capture the observed spatial distribution of proportion of light and heavy rainfall to total rainfall amount in Eastern China, except for medium rainfall. Most models have a bias toward an overestimation of the light and medium rainfall events, and an underestimation of heavy rainfall events. Therefore, these models overestimate the amount of total rainfall over northern and northeastern China and underestimate the amount of total rainfall over southern China and the YHRB. Our analysis indicates that the observed decadal changes in total rainfall over northern China and the YHRB in the late 1970s are mainly attributed to changes in heavy rainfall events. Over northern China, a few CMIP5 models reproduced the observed decadal decrease in both heavy rainfall and total rainfall. Over the YHRB, several models can reproduce the observed decadal increase in total rainfall. However, these models failed to reproduce the increase in heavy rainfall amount due to the model bias of a severe underestimation of heavy rainfall. The authors also find out that multi-model ensemble technique cannot significantly improve the model performance in simulating the spatial distribution of rainfall intensity, especially its decadal changes.
-
Key words:
- CMIP5 models /
- Precipitation intensity /
- Decadal variability /
- Model evaluation
-
图 10 观测和CMIP5模式模拟的1962~2005年夏季华北地区不同等级降水量的时间序列(黑色曲线为总降水;橘色曲线为小雨;绿色曲线为中雨;蓝色曲线为大雨;红色曲线为暴雨。两段蓝色直线分别为总降水1962~1978年和1979~1995年夏季均值线)
Figure 10. Time series of summer mean total (black curved line), light (orange curved line), medium (green curved line), large (blue curved line), and heavy (red curved line) rainfall from observations and CMIP5 models over North China during 1962-2005 (bold blue lines in the figures show the average values of total summer rainfall during 1962-1978 and 1979-1995, respectively)
表 1 17个CMIP5气候模式基本信息简介
Table 1. Description of the 17 CMIP5 climate models used in the present study
模式简称 空间分辨率 研发国家 ACCESS1.0 1.3°(纬度)×1.9°(经度) 澳大利亚 BCC-CSM1.1 2.8°(纬度)×2.8°(经度) 中国 BNU-ESM 2.8°(纬度)×2.8°(经度) 中国 CanESM2 2.8°(纬度)×2.8°(经度) 加拿大 CCSM4 0.94°(纬度)×1.3°(经度) 美国 CSIRO-MK3.6.0 1.9°(纬度)×1.9°(经度) 澳大利亚 FGOALS-g2 3.0°(纬度)×2.8°(经度) 中国 IPSL-CM5A-LR 1.9°(纬度)×3.8°(经度) 法国 IPSL-CM5A-MR 1.3°(纬度)×2.5°(经度) 法国 IPSL-CM5B-LR 1.9°(纬度)×3.8°(经度) 法国 MIROC5 1.4°(纬度)×1.4°(经度) 日本 MIROC-ESM 2.8°(纬度)×2.8°(经度) 日本 MIROC-ESM-CHEM 2.8°(纬度)×2.8°(经度) 日本 MPI-ESM-LR 1.9°(纬度)×1.9°(经度) 德国 MPI-ESM-P 1.9°(纬度)×1.9°(经度) 德国 MRI-CGCM3 1.1°(纬度)×1.1°(经度) 日本 NorESM1-M 1.9°(纬度)×2.5°(经度) 挪威 表 2 华北地区各类降水量值年代际变化
Table 2. Decadal variabilities of total, large, and heavy rainfall over North China
表 3 江淮地区各类降水量值年代际变化
Table 3. Decadal variabilities of total, light, medium, large, and heavy rainfall over the Yangtze-Huaihe River basin
-
[1] 陈红. 2014. CMIP5气候模式对中国东部夏季降水年代际变化的模拟性能评估[J].气候与环境研究, 19 (6):773-786. doi: 10.3878/j.issn.1006-9585.2014.13174Chen Hong. 2014. Validation of the CMIP5 climate models in simulating decadal variations of summer rainfall in eastern China[J]. Climatic and Environmental Research (in Chinese), 19 (6):773-786, doi:10.3878/j.issn.1006-9585. 2014.13174. [2] 陈活泼. 2013. CMIP5模式对21世纪末中国极端降水事件变化的预估[J].科学通报, 58 (8):743-752. doi: 10.1007/s11434-012-5612-2Chen Huopo. 2013. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models[J]. Chinese Science Bulletin, 58 (12):1462-1472, doi: 10.1007/s11434-012-5612-2. [3] 陈晓晨, 徐影, 许崇海, 等. 2014. CMIP5全球气候模式对中国地区降水模拟能力的评估[J].气候变化研究进展, 10 (3):217-225. doi: 10.3969/j.issn.1673-1719.2014.03.011Chen Xiaochen, Xu Ying, Xu Chonghai, et al. 2014. Assessment of precipitation simulations in China by CMIP5 multi-models[J]. Progressus Inquisitiones de Mutatione Climatis (in Chinese), 10 (3):217-225, doi: 10.3969/j.issn.1673-1719.2014.03.011. [4] Dai A G. 2006. Precipitation characteristics in eighteen coupled climate models[J]. J. Climate, 19 (18):4605-4630, doi: 10.1175/JCLI3884.1. [5] 顾薇, 李崇银. 2010. IPCC AR4中海气耦合模式对中国东部夏季降水及PDO、NAO年代际变化的模拟能力分析[J].大气科学学报, 33 (4):401-411. doi: 10.3969/j.issn.1674-7097.2010.04.003Gu Wei, Li Chongyin. 2010. Evaluation of the IPCC AR4 climate models in simulating the interdecadal variations of the East China summer precipitation, PDO and NAO[J]. Transactions of Atmospheric Sciences (in Chinese), 33 (4):401-411, doi: 10.3969/j.issn.1674-7097.2010.04.003. [6] Hagemann S, Arpe K, Roeckner E. 2006. Evaluation of the hydrological cycle in the ECHAM5 model[J]. J. Climate, 19 (16):3810-3827, doi: 10.1175/JCLI3831.1. [7] 韩振宇, 周天军. 2012. APHRODITE高分辨率逐日降水资料在中国大陆地区的适用性[J].大气科学, 36 (2):361-373. doi: 10.3878/j.issn.1006-9895.2011.11043Han Zhenyu, Zhou Tianjun. 2012. Assessing the quality of APHRODITE high-resolution daily precipitation dataset over contiguous China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (2):361-373, doi:10.3878/j.issn. 1006-9895.2011.11043. [8] 黄荣辉, 蔡榕硕, 陈际龙, 等. 2006.我国旱涝气候灾害的年代际变化及其与东亚气候系统变化的关系[J].大气科学, 30 (5):730-743. doi: 10.3878/j.issn.1006-9895.2006.05.02Huang Ronghui, Cai Rongshuo, Chen Jilong, et al. 2006. Interdecadal variations of drought and flooding disasters in China and their association with the East Asian climate system[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30 (5):730-743, doi: 10.3878/j.issn.1006-9895.2006.05.02. [9] 姜大膀, 富元海. 2012. 2℃全球变暖背景下中国未来气候变化预估[J].大气科学, 36 (2):234-246. doi: 10.3878/j.issn.1006-9895.2011.11074Jiang Dabang, Fu Yuanhai. 2012. Climate change over China with 2℃ global warming[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (2):234-246, doi:10.3878/j.issn. 1006-9895.2011.11074. [10] Jiang Z H, Li W, Xu J J, et al. 2015. Extreme precipitation indices over China in CMIP5 models. Part Ⅰ:Model evaluation[J]. J. Climate, 28 (21):8603-8619, doi: 10.1175/JCLI-D-15-0099.1. [11] 江志红, 陈威霖, 宋洁, 等. 2009. 7个IPCC AR4模式对中国地区极端降水指数模拟能力的评估及其未来情景预估[J].大气科学, 33 (1):109-120. doi: 10.3878/j.issn.1006-9895.2009.01.10Jiang Zhihong, Chen Weilin, Song Jie, et al. 2009. Projection and evaluation of the precipitation extremes indices over China based on seven IPCC AR4 coupled climate models[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (1):109-120, doi:10.3878/j.issn. 1006-9895.2009.01.10. [12] Lin Z H, Zeng Q C. 1997. Simulation of east Asian summer monsoon by using an improved AGCM[J]. Advance in Atmospheric Sciences, 14 (4):513-526, doi: 10.1007/s00376-997-0069-y. [13] Lin Z H, Levy J K, Xu X K, et al. 2005. Weather and seasonal climate prediction for flood planning in the Yangtze River basin[J]. Stochastic Environmental Research and Risk Assessment, 19 (6):428-437, doi: 10.1007/s00477-005-0007-4. [14] 李红梅, 周天军, 宇如聪. 2008.近四十年我国东部盛夏日降水特性变化分析[J].大气科学, 32 (2):358-370. doi: 10.3878/j.issn.1006-9895.2008.02.14Li Hongmei, Zhou Tianjun, Yu Rucong. 2008. Analysis of July-August daily precipitation characteristics variation in Eastern China during 1958-2000[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32 (2):358-370, doi:10.3878/j.issn. 1006-9895.2008.02.14. [15] 李宏毅, 林朝晖, 陈红. 2012.我国华南4、5月份降水年代际变化的特征及其与中西太平洋海温的可能关系[J].气候与环境研究, 17 (4):481-494. doi: 10.3878/j.issn.1006-9585.2011.11040Li Hongyi, Lin Zhaohui, Chen Hong. 2012. Characteristics of the interdecadal variability of precipitation in April and May over South China and possible relationship with the mid-West Pacific SST[J]. Climatic and Environmental Research (in Chinese), 17 (4):481-494, doi: 10.3878/j.issn.1006-9585.2011.11040. [16] Luo L F, Tang W, Lin Z H, et al. 2013. Evaluation of summer temperature and precipitation predictions from NCEP CFSv2 retrospective forecast over China[J]. Climate Dyn., 41 (7-8):2213-2230, doi: 10.1007/s00382-013-1927-1. [17] 刘敏, 江志红. 2009. 13个IPCC AR4模式对中国区域近40 a气候模拟能力的评估[J].南京气象学院学报, 32 (2):256-268. doi: 10.3969/j.issn.1674-7097.2009.02.013Liu Min, Jiang Zhihong. 2009. Simulation ability evaluation of surface temperature and precipitation by thirteen IPCC AR4 Coupled Climate Models in China during 1961-2000[J]. Journal of Nanjing Institute of Meteorology (in Chinese), 32 (2):256-268, doi: 10.3969/j.issn.1674-7097.2009.02.013. [18] Qu X, Huang G, Zhou W. 2014. Consistent responses of East Asian summer mean rainfall to global warming in CMIP5 simulations[J]. Theor. Appl. Climatol., 117 (1-2):123-131, doi: 10.1007/s00704-013-0995-9. [19] 孙颖, 丁一汇. 2008. IPCC AR4气候模式对东亚夏季风年代际变化的模拟性能评估[J].气象学报, 66 (5):765-780. doi: 10.11676/qxxb2008.070Sun Ying, Ding Yihui. 2008. Validation of IPCC AR4 climate models in simulating interdecadal change of East Asian summer monsoon[J]. Acta Meteorologica Sinica (in Chinese), 66 (5):765-780, doi: 10.11676/qxxb2008.070. [20] Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design[J]. Bull. Amer. Meteor. Soc., 93 (4):485-498, doi: 10.1175/BAMS-D-11-00094.1. [21] Tian D, Guo Y, Dong W J. 2015. Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models[J]. Advances in Atmospheric Sciences, 32 (4):487-496, doi: 10.1007/s00376-014-4102-7. [22] Tu K, Yan Z W, Zhang X B, et al. 2009. Simulation of precipitation in monsoon regions of China by CMIP3 models[J]. Atmospheric and Oceanic Science Letters, 2 (4):194-200, doi:10.1080/16742834.2009. 11446803. [23] 吴佳, 周波涛, 徐影. 2015.中国平均降水和极端降水对气候变暖的响应:CMIP5模式模拟评估和预估[J].地球物理学报, 58 (9):3048-3060. doi: 10.6038/cjg20150903Wu Jia, Zhou Botao, Xu Ying. 2015. Response of precipitation and its extremes over China to warming:CMIP5 simulation and projection[J]. Chinese Journal of Geophysics (in Chinese), 58 (9):3048-3060, doi: 10.6038/cjg20150903. [24] Xie P P, Chen M Y, Yang S, et al. 2007. A gauge-based analysis of daily precipitation over East Asia[J]. J. Hydrometeor., 8 (3):607-626, doi: 10.1175/JHM583.1. [25] 许崇海, 沈新勇, 徐影. 2007. IPCC AR4模式对东亚地区气候模拟能力的分析[J].气候变化研究进展, 3 (5):287-292. doi: 10.3969/j.issn.1673-1719.2007.05.008Xu Chonghai, Shen Xinyong, Xu Ying. 2007. An analysis of climate change in East Asia by using the IPCC AR4 simulations[J]. Advances in Climate Change Research (in Chinese), 3 (5):287-292, doi: 10.3969/j.issn.1673-1719.2007.05.008. [26] Yang S, Zhang Z Q, Kousky V E, et al. 2008. Simulations and seasonal prediction of the Asian summer monsoon in the NCEP climate forecast system[J]. J. Climate, 21 (15):3755-3775, doi: 10.1175/2008JCLI1961.1. [27] Yao S X, Zhang Y C. 2010. Simulation of China summer precipitation using a regional air-sea coupled model[J]. Acta Meteorologica Sinica, 24 (2):203-214. [28] Zhang L X, Zhou T J. 2014. An assessment of improvements in global monsoon precipitation simulation in FGOALS-s2[J]. Advances in Atmospheric Sciences, 31(1):165-178, doi: 10.1007/s00376-013-2164-6. [29] 赵宗慈, 罗勇, 黄建斌. 2015. CMIP5和CMIP3对东亚降水和全球热带气旋模拟效果的评估[J].气候变化研究进展, 11 (6):443-446. doi: 10.3969/j.issn.1673-1719.2015.06.009Zhao Zongci, Luo Yong, Huang Jianbin. 2015. Evaluation of precipitation in East Asia and global tropical cyclones simulated by CMIP5 and CMIP3[J]. Advances in Climate Change Research (in Chinese), 11 (6):443-446, doi: 10.3969/j.issn.1673-1719.2015.06.009. -