Application of Time-Scale Decomposition Statistical Method in Climatic Prediction of Summer Extreme High-Temperature Events in South China
-
摘要: 基于高温日数存在受不同物理因子影响不同时间尺度变率的特征,应用滤波对华南夏季高温日数进行时间尺度分离,得到高温日数的年代际分量和年际分量。统计分析高温日数总量、年代际分量和年际分量在各自对应时间尺度上的影响因子,采用"向前"交叉检验逐步回归法,分别建立高温日数总量、年代际分量和年际分量的回归模型。高温日数总量的回归模型即为高温日数不区分时间尺度的直接回归模型,而两个分量回归模型拟合结果的叠加,即为高温日数时间尺度分离统计模型对总量的拟合。利用十折交叉检验法,对高温日数直接回归模型和时间尺度分离统计模型的拟合结果进行比较:相比高温日数直接回归模型,时间尺度分离统计模型的年代际分量均方根误差由2.6降低到2.3,与观测数据的相关系数由0.69提高到0.73(显著性水平α=0.01);年际分量均方根误差由3.2降低到2.9,与观测数据的相关系数由0.4(α=0.1)提高到0.48(α=0.01);高温日数总量均方根误差由4.1降低到3.7,与观测数据的相关系数由0.48提高到0.62(α=0.01)。1979~2010年拟合时段华南夏季高温日数的回报结果表明:两模型回报结果与观测数据均存在明显相关(α=0.01),直接回归模型的相关系数为0.57,时间尺度分离统计模型提高到0.72。2011~2013年独立检验时段的预测结果表明:直接回归模型预测结果的平均均方根误差为26.4%,时间尺度分离统计模型降低到12.3%。初步结果表明,两模型对华南夏季高温日数均有一定的预测能力,而时间尺度分离统计模型的预测结果有所改进。Abstract: A time-scale decomposition (TSD) method to statistically downscale the predictand and predictors is used for seasonal forecast of summer extreme high temperature events (hot days) in South China. The hot days present a significant variability that is associated with distinct possible predictors. Both the hot days and the possible predictors are decomposed into inter-decadal and inter-annual components by fast flourier transformation filtering. Three downscaling regression models are then separately set up for the total hot days and the inter-decadal and inter-annual components of hot days. The downscaling regression model of the total hot days is named as direct regression model, while the downscaled inter-decadal and inter-annual regression models are combined together and named as TSD statistical regression model to obtain the total hot days. The fitting results of the direct regression model and TSD statistical regression model are tested by 10-fold cross-validation. The results show that compared to the direct regression model, the TSD statistical regression model decreases the root-mean-square error (RMSE) from 2.6 d to 2.3 d and increases the correlation coefficient with observations from 0.69 to 0.73 for the inter-decadal component; the TSD statistical regression model also decreases the RMSE from 3.2 d to 2.9 d and increases the correlation coefficient from 0.4 to 0.48 for the inter-annual component; for total hot days, the TSD statistical regression model decreases the RMSE from 4.1 d to 3.7 d and increases the correlation coefficient from 0.48 to 0.68. The hindcast results of hot days during 1979-2010 show that the correlation coefficient between observations and outputs of the direct regression model is 0.57, while the value is improved to 0.72 by the TSD statistical regression model. The forecast results of hot days during the independent validation period (2011-2013) show that the relative RMSE is 26.4% by the direct regression model, and it is 12.3% by the TSD statistical regression model. Compared with observations, both of the direct regression model and the TSD statistical regression model can predict the hot days to some extent in South China, and the TSD statistical regression model performs better for forecasts during 1979-2013.
-
Key words:
- South China /
- Time-scale decomposition /
- Summer hot days /
- Prediction
-
图 2 1979~2010年华南夏季(6~8月)高温日数总量(黑实线)、年代际分量(红实线)、年际变率(蓝短线)、年际分量(年际变率减均值,蓝实线)时间序列
Figure 2. Time series of the total amount (black solid line), the inter-decadal component (red solid line), the inter-annual variability (blue short line), and the inter-annual component (the inter-annual variability minus average value; blue solid line) of summer (June–July–August) hot days over 1979–2010 in South China
图 3 1979~2010年华南夏季高温日数(a)总量、(b)年代际分量和(c)年际分量与对应时间尺度春季土壤湿度相关空间分布图。图中打点区域表示通过相关系数显著性水平α=0.1的显著性检验
Figure 3. Correlation maps of (a) summer hot days, (b) its inter-decadal component, and (c) its inter-annual component with the spring soil moisture on corresponding time scales over 1979–2010 in South China. The dotted regions indicate correlation coefficients significant at α=0.1 level
图 4 1979~2010年华南夏季高温日数(a)总量、(b)年代际分量和(c)年际分量与对应时间尺度春季印度洋海表温度相关空间分布。图中打点区域表示通过相关系数显著性水平α=0.1的显著性检验
Figure 4. Correlation maps of (a) summer hot days, (b) its inter-decadal component, and (c) its inter-annual component with the spring sea surface temperature in the Indian Ocean on corresponding time scales during 1979–2010. The dotted regions indicate correlation coefficients significant at α=0.1 level
图 5 1979~2010年华南夏季高温日数(a)总量、(b)年代际分量和(c)年际分量与对应时间尺度气候指数的相关柱状图。五角星代表通过相关系数显著性水平α=0.1的显著性检验
Figure 5. Correlation coefficients of (a) summer hot days, (b) its inter-decadal component, and (c) its inter-annual component with seasonal climate indices on the corresponding time scales during 1979–2010. The stars represent correlation coefficients significant at α=0.1 level
图 6 1979~2010年华南夏季高温日数逐步回归筛选过程中不同预报因子拟合回归方程在交叉检验中的均方根误差:(a)总量;(b)年代际分量;(c)年际分量
Figure 6. Root mean square errors between observed and cross-validation estimated summer hot days by different equations regressed by distinct predictors in stepwise regression screening for (a) the total summer hot days model, (b) the inter-decadal model, and (c) the inter-annual model
图 7 1979~2010年华南夏季高温日数观测值(黑色实线)、直接回归模型(蓝色实心圆)和时间尺度分离统计模型(黄色实心圆)十折交叉检验拟合值的(a)年代际分量、(b)年际分量和(c)总量
Figure 7. (a) Inter-decadal component, (b) inter-annual component, and (c) total amount of the observed (black solid lines), 10-fold cross-validation estimated values (black solid lines) regressed by the regression model (blue dot), and the statistically downscaled mode (yellow dot) of the summer hot days in South China during 1979–2010
图 8 华南夏季高温日数在1979~2013年的观测值(黑实线)、拟合时段(1979~2010年)统计模型的拟合值(蓝、黄实线)和独立检验时段(2011~2013年)统计模型的预测值(蓝、黄实心圆):直接回归模型(蓝);时间尺度分离统计模型(黄)
Figure 8. Time series of observed summer hot days during 1979-2013 (black solid line) and the estimated values during the training period of 1979-2010 (yellow and blue solid lines) and the validation period of 2011-2013 (yellow and blue dots) regressed by the regression model (blue) and statistically downscaled mode (yellow)
表 1 1979~2010年华南夏季高温日数总量、年代际分量和年际分量与对应时间尺度华南春季土壤湿度区域平均的相关系数
Table 1. Correlation coefficients on different time scales between time series of summer hot days and spring soil moisture on corresponding time scales in South China during 1979–2010
高温日数总量与土壤湿度相关系数 高温日数年代际分量与土壤湿度相关系数 高温日数年际分量与土壤湿度相关系数 -0.26 -0.73** 0.37* *、**分别代表通过显著性水平α=0.1、α=0.01的显著性检验。 表 2 1979~2010年华南夏季高温日数总量、年代际分量和年际分量与对应时间尺度春季印度洋关键区海温区域平均的相关系数
Table 2. Correlation coefficients on different time scales of time series of summer hot days and spring sea surface temperature over the Indian Ocean region marked by the box in Fig. 4 during 1979–2010
高温日数总量与关键区海温相关系数 高温日数年代际分量与关键区海温相关系数 高温日数年际分量与关键区海温相关系数 0.57** 0.8** 0.47** **代表通过显著性水平α=0.01的显著性检验。 表 3 1979~2010年华南夏季高温日数总量及其年代际和年际分量的可能预报因子
Table 3. Potential predictors for summer hot days, its inter-decadal component, and inter-annual component in South China during 1979–2010
夏季高温日数总量可能的预报因子 夏季高温日数年代际分量可能的预报因子 夏季高温日数年际分量可能的预报因子 春季关键区海温(SST)
春季AMO
冬季Nino1+2指数春季土壤湿度年代际分量(SM_d)
春季关键区海温年代际分量(SST_d)
秋季AMO年代际分量(AMO_d)
春季AO年代际分量(AO_d)
春季PDO年代际分量(PDO_d)
秋季Nino1+2指数年代际分量(Nino1+2_d)春季土壤湿度年际分量(SM_a)
春季关键区海温年际分量(SST_a)
春季AMO年际分量(AMO_a)
春季PDO年际分量(PDO_a)
冬季Nino1+2指数年际分量(Nino1+2_a)表 4 1979~2010年华南夏季高温日数直接回归模型和时间尺度分离统计模型在各时间尺度十折交叉检验拟合值的均方根误差和与观测数据的相关系数
Table 4. Root mean square errors and correlation coefficients between observed and estimated values by 10-fold cross-validation for summer hot days, and the inter-decadal and inter-annual components in South China during 1979–2010
均方根误差 与观测数据的相关系数 年代际分量 年际分量 总量 年代际分量 年际分量 总量 直接回归模型 2.6 3.2 4.1 0.69** 0.4* 0.48** 时间尺度分离统计模型 2.3 2.9 3.7 0.73** 0.48** 0.62** 统计模型 *、**分别代表通过显著性水平α=0.1、α=0.01的显著性检验。 -
[1] Cao L J, Zhao P, Yan Z W, et al. 2013. Instrumental temperature series in eastern and central China back to the nineteenth century[J]. J. Geophys. Res., 118 (15):8197-8207, doi: 10.1002/jgrd.50615. [2] 陈丽娟, 袁媛, 杨明珠, 等. 2013.海温异常对东亚夏季风影响机理的研究进展[J].应用气象学报, 24 (5):521-532. doi: 10.3969/j.issn.1001-7313.2013.05.002Chen Lijuan, Yuan Yuan, Yang Mingzhu, et al. 2013. A review of physical mechanisms of the global SSTA impact on EASM[J]. Journal of Applied Meteorological Science (in Chinese), 24 (5):521-532, doi:10.3969/j.issn.1001-7313. 2013.05.002. [3] Chen R D, Lu R Y. 2015. Comparisons of the circulation anomalies associated with extreme heat in different regions of eastern China[J]. J. Climate, 28 (14):5830-5844, doi: 10.1175/JCLI-D-14-00818.1. [4] Chen S S, Zhang J Y, Huang G. 2016. An interdecadal shift in the number of hot nights around 1997 over eastern China[J]. Atmospheric Science Letters, 17 (9):501-509, doi: 10.1002/asl.684. [5] 陈烈庭. 1991.阿拉伯海-南海海温距平纬向差异对长江中下游降水的影响[J].大气科学, 15 (1):33-42. doi: 10.3878/j.issn.1006-9895.1991.01.04Chen Lieting. 1991. Effect of zonal difference of sea surface temperature anomalies in the Arabian Sea and the South China Sea on summer rainfall over the Yangtze River[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 15 (1):33-42, doi: 10.3878/j.issn.1006-9895.1991.01.04. [6] 陈文. 2002. E1 Niño和La Niña事件对东亚冬、夏季风循环的影响[J].大气科学, 26 (5):595-610. doi: 10.3878/j.issn.1006-9895.2002.05.02Chen Wen. 2002. Impacts of El Niño and La Niña on the cycle of the East Asian winter and summer monsoon[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26 (5):595-610, doi: 10.3878/j.issn.1006-9895.2002.05.02. [7] 陈月娟, 周任君, 武海峰. 2002. Niño1 + 2海区冷、暖水期西太平洋副高的特征及其对东亚季风的影响[J].大气科学, 26 (3):373-386. doi: 10.3878/j.issn.1006-9895.2002.03.08Chen Yuejuan, Zhou Renjun, Wu Haifeng. 2002. Features of the western Pacific subtropical high during the warm and cool periods of Niño1 + 2 area and its influence on the East Asian monsoon[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26 (3):373-386, doi:10.3878/j.issn. 1006-9895.2002.03.08. [8] Ding T, Qian W H, Yan Z W. 2010. Changes in hot days and heat waves in China during 1961-2007[J]. International Journal of Climatology, 30 (10):1452-1462, doi: 10.1002/joc.1989. [9] 封国林, 赵俊虎, 支蓉, 等. 2013.动力-统计客观定量化汛期降水预测研究新进展[J].应用气象学报, 24 (6):656-665. doi: 10.3969/j.issn.1001-7313.2013.06.002Feng Guolin, Zhao Junhun, Zhi Rong, et al. 2013. Recent progress on the objective and quantifiable forecast of summer precipitation based on dynamical-statistical method[J]. Journal of Applied Meteorological Science (in Chinese), 24 (6):656-665, doi: 10.3969/j.issn.1001-7313.2013.06.002. [10] 龚志强, 王艳娇, 王遵娅, 等. 2014. 2013年夏季气候异常特征及成因简析[J].气象, 40 (1):119-125. doi: 10.7519/j.issn.1000-0526.2014.01.015Gong Zhiqiang, Wang Yanjiao, Wang Zunya, et al. 2014. Briefly analysis on climate anomalies and causations in summer 2013[J]. Meteorological Monthly (in Chinese), 40 (1):119-125, doi: 10.7519/j.issn.1000-0526.2014.01.015. [11] Gong Z Q, Li S F, Hu P, et al. 2016. Dynamic-analogue correction of the decadal change of East Asian summer precipitation in the late 1990s[J]. Journal of Meteorological Research, 30 (3):341-355, doi: 10.1007/s13351-016-5220-1. [12] 郭彦, 李建平. 2012.一种分离时间尺度的统计降尺度模型的建立和应用——以华北汛期降水为例[J].大气科学, 36 (2):385-396. doi: 10.3878/j.issn.1006-9895.2011.11045Guo Yan, Li Jianping. 2012. A time-scale decomposition statistical downscaling model:Case study of North China rainfall in rainy season[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (2):385-396, doi: 10.3878/j.issn.1006-9895.2011.11045. [13] 何超, 周天军, 吴波. 2015.影响夏季西北太平洋副热带高压年际变率的关键海区及影响机制[J].气象学报, 73 (5):940-951. doi: 10.11676/qxxb2015.064He Chao, Zhou Tianjun, Wu Bo. 2015. The key oceanic regions responsible for the interannual variability of the western North Pacific subtropical high and their impacting mechanisms[J]. Acta Meteorologica Sinica, 73 (5):940-951, doi: 10.11676/qxxb2015.064. [14] 何文平, 王柳, 万仕全, 等. 2012.旱涝预测的演化建模方法[J].物理学报, 61 (11):119210. doi: 10.7498/aps.61.119201He Wenping, Wang Liu, Wan Shiquan, et al. 2012. Evolutionary modeling for dryness and wetness prediction[J]. Acta Physica Sinica (in Chinese), 61 (11):119210, doi: 10.7498/aps.61.119201. [15] He W P, Zhao S S, Liu Q Y, et al. 2016. Long-range correlation in the drought and flood index from 1470 to 2000 in eastern China[J]. International Journal of Climatology, 36 (4):1676-1685. doi: 10.1002/joc.2016.36.issue-4 [16] Hu K M, Huang G, Qu X, et al. 2012. The impact of Indian Ocean variability on high temperature extremes across the southern Yangtze River valley in late summer[J]. Adv. Atmos. Sci., 29 (1):91-100, doi: 10.1007/s00376-011-0209-2. [17] Hu K M, Huang G, Wu R G. 2013. A strengthened influence of ENSO on August high temperature extremes over the southern Yangtze River valley since the late 1980s[J]. J. Climate, 26 (7):2205-2221, doi: 10.1175/JCLI-D-12-00277.1 [18] 黄刚, 胡开明, 屈侠, 等. 2016.热带印度洋海温海盆一致模的变化规律及其对东亚夏季气候影响的回顾[J].大气科学, 40 (1):121-130. doi: 10.3878/j.issn.1006-9895.1505.15143Huang Gang, Hu Kaiming, Qu Xia, et al. 2016. A review about Indian Ocean basin mode and its impacts on East Asian summer climate[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40 (1):121-130, doi: 10.3878/j.issn.1006-9895.1505.15143. [19] IPCC. 2013. Technical summary[M]//Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate ChangeStocker T F, Qin D, Plattner G K, et al, Eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 1535pp, doi: 10.1017/CBO9781107415324. [20] 雷杨娜, 龚道溢, 张自银, 等. 2009.中国夏季高温日数时空变化及其环流背景[J].地理研究, 28 (3):653-662. doi: 10.3321/j.issn:1000-0585.2009.03.010Lei Yangna, Gong Daoyi, Zhang Ziyin, et al. 2009. Spatial-temporal characteristics of high-temperature events in summer in eastern China and the associated atmospheric circulation[J]. Geographical Research (in Chinese), 28 (3):653-662, doi: 10.3321/j.issn:1000-0585.2009.03.010. [21] 李崇银, 朱锦红, 孙照渤. 2002.年代际气候变化研究[J].气候与环境研究, 7 (2):209-219. http://www.dqkxqk.ac.cn/qhhj/qhhj/ch/reader/view_abstract.aspx?flag=1&file_no=20020208&journal_id=qhhjLi Chongyin, Zhu Jinhong, Sun Zhaobo. 2002. The study interdecadel climate variation[J]. Climatic and Environmental Research (in Chinese), 7 (2):209-219. http://www.dqkxqk.ac.cn/qhhj/qhhj/ch/reader/view_abstract.aspx?flag=1&file_no=20020208&journal_id=qhhj [22] 李娟, 董文杰, 严中伟. 2012.中国东部1960~2008年夏季极端温度与极端降水的变化及其环流背景[J].科学通报, 57 (8):641-646. doi: 10.1007/s11434-012-4989-2Li Juan, Dong Wenjie, Yan Zhongwei. 2012. Changes of climate extremes of temperature and precipitation in summer in eastern China associated with changes in atmospheric circulation in East Asia during 1960-2008[J]. Chinese Science Bulletin (in Chinese), 57 (5):1856-1861, doi: 10.1007/s11434-012-4989-2. [23] 李建平, 任荣彩, 齐义泉, 等. 2013.亚洲区域海-陆-气相互作用对全球和亚洲气候变化的作用研究进展[J].大气科学, 37 (2):518-538. doi: 10.3878/j.issn.1006-9895.2012.12322Li Jianping, Ren Rongcai, Qi Yiquan, et al. 2013. Progress in air-land-sea interactions in Asia and their role in global and Asian climate change[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (2):518-538, doi: 10.3878/j.issn.1006-9895.2012.12322. [24] 李双林, 王彦明, 郜永祺. 2009.北大西洋年代际振荡(AMO)气候影响的研究评述[J].大气科学学报, 32 (3):458-465. doi: 10.3969/j.issn.1674-7097.2009.03.014Li Shuanglin, Wang Yanming, Gao Yongqi. 2009. A review of the researches on the Atlantic Multidecadal Oscillation (AMO) and its climate influence[J]. Transactions of Atmospheric Science, 32 (3):458-465, doi:10.3969/j.issn. 1674-7097.2009.03.014. [25] 李湉湉, 杜艳君, 莫杨, 等. 2014.基于脆弱性的高温热浪人群健康风险评估研究进展[J].环境与健康杂志, 31 (6):547-550. doi: 10.11821/dlxb201507002Li Tiantian, Du Yanjun, Mo Yang, et al. 2014. Human health risk assessment of heat wave based on vulnerability:A review of recent studies[J]. Journal of Environment and Health (in Chinese), 31(6):547-550. doi: 10.11821/dlxb201507002 [26] Li Z, Yan Z W, Wu H Y. 2015. Updated homogenized Chinese temperature series with physical consistency[J]. Atmospheric and Oceanic Science Letters, 8 (1):17-22. http://159.226.119.58/aosl/CN/abstract/abstract508.shtml [27] 李纵横, 李崇银, 宋洁, 等. 2015. 1960~2011年江淮地区夏季极端高温日数的特征及成因分析[J].气候与环境研究, 20 (5):511-522. doi: 10.3878/j.issn.1006-9585.2015.14157Li Zongheng, Li Chongyin, Song Jie, et al. 2015. An analysis of the characteristics and causes of extremely high temperature days in the Yangtze-Huaihe River basins in summer 1960-2011[J]. Climatic and Environmental Research (in Chinese), 20 (5):511-522, doi: 10.3878/j.issn.1006-9585.2015.14157. [28] 梁乐宁, 陈海山. 2010.春季华南土壤湿度异常与中国夏季降水的可能联系[J].大气科学学报, 33 (5):536-546. doi: 10.3969/j.issn.1674-7097.2010.05.004Liang Lening, Chen Haishan. 2010. Possible linkage between spring soil moisture anomalies over South China and summer rainfall in China[J]. Transactions of Atmospheric Sciences (in Chinese), 33 (5):536-546, doi:10.3969/j.issn. 1674-7097.2010.05.004. [29] 刘华军, 何礼伟, 杨骞. 2014.中国人口老龄化的空间非均衡及分布动态演进:1989~2011[J].人口研究, 38 (2):71-82. http://www.bigengculture.com/shekelunwen/renkou/380514.htmlLiu Huajun, He Liwei, Yangqian. 2014. Spatial inequality and distributional dynamics of population ageing in China:1989-2011[J]. Population Research (in Chinese), 38 (2):71-82. http://www.bigengculture.com/shekelunwen/renkou/380514.html [30] 刘娜, 李双林. 2015.基于时间尺度分离的中国东部夏季降水预测[J].应用气象学报, 26 (3):328-337. doi: 10.11898/1001-7313.20150308Liu Na, Li Shuanglin. 2015. Short-term climate prediction for summer rainfall based on time-scale decomposition[J]. Journal of Applied Meteorological Science (in Chinese), 26 (3):328-337, doi: 10.11898/1001-7313.20150308. [31] Lu R Y, Chen R D. 2016. A review of recent studies on extreme heat in China[J]. Atmospheric and Oceanic Science Letters, 9 (2):114-121, doi: 10.1080/16742834.2016.1133071. [32] Qian C, Yan Z W, Wu Z H, et al. 2011. Trends in temperature extremes in association with weather-intraseasonal fluctuations in eastern China[J]. Advances in Atmospheric Sciences, 28 (2):297-309, doi: 10.1007/s00376-010-9242-9. [33] 任国玉, 初子莹, 周雅清, 等. 2005.中国气温变化研究最新进展[J].气候与环境研究, 10 (4):701-716. doi: 10.3969/j.issn.1006-9585.2005.04.001Ren Guoyu, Chu Ziying, Zhou Yaqing, et al. 2005. Recent progresses in studies of regional temperature changes in China[J]. Climatic and Environmental Research (in Chinese), 10 (4):701-716, doi: 10.3969/j.issn.1006-9585.2005.04.001. [34] 任国玉, 陈峪, 邹旭恺, 等. 2010a.综合极端气候指数的定义和趋势分析[J].气候与环境研究, 15 (4):354-364. doi: 10.3878/j.issn.1006-9585.2010.04.02Ren Guoyu, Chen Yu, Zou Xukai, et al. 2010a. Definition and trend analysis of an integrated extreme climatic index[J]. Climatic and Environmental Research (in Chinese), 15 (4):354-364, doi: 10.3878/j.issn.1006-9585.2010.04.02. [35] 任国玉, 封国林, 严中伟. 2010b.中国极端气候变化观测研究回顾与展望[J].气候与环境研究, 15 (4):337-353. doi: 10.3878/j.issn.1006-9585.2010.04.01Ren Guoyu, Feng Guolin, Yan Zhongwei. 2010b. Progresses in observation studies of climate extremes and changes in mainland China[J]. Climatic and Environmental Research (in Chinese), 15 (4):337-353, doi:10.3878/j.issn.1006-9585. 2010.04.01. [36] Ren G Y, Zhou Y Q. 2014. Urbanization effect on trends of extreme temperature indices of national stations over Mainland China, 1961-2008[J]. J. Climate, 27 (6):2340-2360, doi: 10.1175/jcli-d-13-00393.1. [37] 阮成卿, 李建平. 2016.华北汛期降水分离时间尺度降尺度预测模型的改进[J].大气科学, 40 (1):215-226. doi: 10.3878/j.issn.1006-9895.1503.14317Ruan Chengqing, Li Jianping. 2016. An improvement in a time-scale decomposition statistical downscaling prediction model for summer rainfall over North China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40 (1):215-226, doi: 10.3878/j.issn.1006-9895.1503.14317. [38] 史军, 丁一汇, 崔林丽. 2009.华东极端高温气候特征及成因分析[J].大气科学, 33 (2):347-358. doi: 10.3878/j.issn.1006-9895.2009.02.13Shi Jun, Ding Yihui, Cui Linli. 2009. Climatic characteristics of extreme maximum temperature in East China and its causes[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (2):347-358, doi: 10.3878/j.issn.1006-9895.2009.02.13. [39] 施能, 朱乾根, 吴彬贵. 1996.近40年东亚夏季风及我国夏季大尺度天气气候异常[J].大气科学, 20 (5):575-583. doi: 10.3878/j.issn.1006-9895.1996.05.08Shi Neng, Zhu Qian'gen, Wu Bingui. 1996. The East Asian summer monsoon in relation to summer large scale weather-climate anomaly in China for last 40 years[J]. Scientia Atmospherica Sinica (in Chinese), 20 (5):575-583, doi: 10.3878/j.issn.1006-9895.1996.05.08. [40] 孙建奇, 王会军, 袁薇. 2011.我国极端高温事件的年代际变化及其与大气环流的联系[J].气候与环境研究, 16 (2):199-208. doi: 10.3878/j.issn.1006-9585.2011.02.09Sun Jianqi, Wang Huijun, Yuan Wei. 2011. Decadal variability of the extreme hot event in China and its association with atmospheric circulations[J]. Climatic and Environmental Research (in Chinese), 16 (2):199-208, doi: 10.3878/j.issn.1006-9585.2011.02.09. [41] 万仕全, 封国林, 周国华, 等. 2005.基于EMD方法的观测数据信息提取与预测研究[J].气象学报, 63 (4):516-525. doi: 10.3321/j.issn:0577-6619.2005.04.013Wan Shiquan, Feng Guolin, Zhou Guohua, et al. 2005. Extracting useful information from the observations for the prediction based on EMD method[J]. Acta Meteorologica Sinica (in Chinese), 63 (4):516-525, doi: 10.3321/j.issn:0577-6619.2005.04.013. [42] Wan S Q, Feng G L, Dong W J, et al. 2005. On the climate prediction of nonlinear and non-stationary time series with the EMD method[J]. Chinese Physics, 14 (3):628-633, doi: 10.1088/1009-1963/14/3/036. [43] Wei K, Chen W. 2011. An abrupt increase in the summer high temperature extreme days across China in the mid-1990s[J]. Advances in Atmospheric Sciences, 28 (5):1023-1029, doi: 10.1007/s00376-010-0080-6. [44] 吴国雄, 丑纪范, 刘屹岷, 等. 2003.副热带高压研究进展及展望[J].大气科学, 27 (4):503-517. doi: 10.3878/j.issn.1006-9895.2003.04.06Wu Guoxiong, Chou Jifan, Liu Yimin, et al. 2003. Review and prospect of the study on the subtropical anticyclone[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27 (4):503-517, doi: 10.3878/j.issn.1006-9895.2003.04.06. [45] Xia J J, Tu K, Yan Z W, et al. 2016. The super-heat wave in eastern China during July-August 2013:A perspective of climate change[J]. International Journal of Climatology, 36 (3):1291-1298, doi:10.1002/joc. 4424. [46] 杨辉, 李崇银. 2005. 2003年夏季中国江南异常高温的分析研究[J].气候与环境研究, 10 (1):80-85. doi: 10.3969/j.issn.1006-9585.2005.01.008Yang Hui, Li Chongyin. 2005. Diagnostic study of serious high temperature over south China in 2003 summer[J]. Climatic and Environmental Research (in Chinese), 10 (1):80-85, doi: 10.3969/j.issn.1006-9585.2005.01.008. [47] 杨宏青, 陈正洪, 谢森, 等. 2013.夏季极端高温对武汉市人口超额死亡率的定量评估[J].气象与环境学报, 29 (5):140-143. http://d.wanfangdata.com.cn/Periodical_lnqx201305023.aspxYang Hongqing, Chen Zhenghong, Xie Sen, et al. 2013. Quantitative assessment of impact of extreme high temperature in summer on excess mortality in Wuhan[J]. Journal of Meteorology and Environment (in Chinese), 29 (5):140-143. http://d.wanfangdata.com.cn/Periodical_lnqx201305023.aspx [48] 杨续超, 陈葆德, 胡可嘉. 2015.城市化对极端高温事件影响研究进展[J].地理科学进展, 34 (10):1219-1228. doi: 10.18306/dlkxjz.2015.10.002Yang Xuchao, Chen Baode, Hu Kejia. 2015. A review of impacts of urbanization on extreme heat events[J]. Progress in Geography (in Chinese), 34 (10):1219-1228, doi:10. 18306/dlkxjz.2015.10.002. [49] 叶殿秀, 尹继福, 陈正洪, 等. 2013. 1961~2010年我国夏季高温热浪的时空变化特征[J].气候变化研究进展, 9 (1):15-20. doi: 10.3969/j.issn.1673-1719.2013.01.003Ye Dianxiu, Yin Jifu, Chen Zhenghong, et al. 2013. Spatiotemporal change characteristics of summer heatwaves in China in 1961-2010[J]. Progressus Inquisitiones de Mutatione Climatis (in Chinese), 9 (1):15-20, doi: 10.3969/j.issn.1673-1719.2013.01.003. [50] 袁媛, 李崇银. 2009.热带印度洋海温异常不同模态对南海夏季风爆发的可能影响[J].大气科学, 33 (2):325-336. doi: 10.3878/j.issn.1006-9895.2009.02.11Yuan Yuan, Li Cohngyin. Possible impacts of the tropical Indian Ocean SST anomaly modes on the South China Sea summer monsoon onset[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (2):325-336, doi:10.3878/j.issn. 1006-9895.2009.02.11. [51] 张井勇, 吴凌云. 2011.陆-气耦合增加中国的高温热浪[J].科学通报, 56 (23):1905-1909. doi: 10.1007/s11434-011-4628-3Zhang Jingyong, Wu Lingyun. 2011. Land-atmosphere coupling amplifies hot extremes over China[J]. Chinese Science Bulletin, 56 (31):3328-3332, doi: 10.1007/s11434-011-4628-3. [52] 张英华, 李艳, 李德帅, 等. 2016.中国东部夏季极端高温的空间分布特征及其环流型[J].高原气象, 35 (2):469-483. doi: 10.7522/j.issn.1000-0534.2014.00159Zhang Yinghua, Li Yan, Li Deshuai, et al. 2016. Study on the space distribution and circulation pattern of extreme high temperature over eastern China in summer[J]. Plateau Meteorology, 35 (2):469-483, doi:10.7522/j.issn.1000-0534. 2014.00159. [53] 张勇, 曹丽娟, 许吟隆, 等. 2008.未来我国极端温度事件变化情景分析[J].应用气象学报, 19 (6):655-660. doi: 10.3969/j.issn.1001-7313.2008.06.003Zhang Yong, Cao Lijuan, Xu Yinlong, et al. 2008. Scenario analyses on future changes of extreme temperature events over China[J]. Journal of Applied Meteorological Science (in Chinese), 19 (6):655-660, doi:10.3969/j.issn.1001-7313. 2008.06.003. [54] 周连童, 黄荣辉. 2003.关于我国夏季气候年代际变化特征及其可能成因的研究[J].气候与环境研究, 8 (3):274-290. doi: 10.3969/j.issn.1006-9585.2003.03.003Zhou Liantong, Huang Ronghui. 2003. Research on the characteristics of interdecadal variability of summer climate in China and its possible cause[J]. Climatic and Environmental Research (in Chinese), 8 (3):274-290, doi:10.3969/j.issn. 1006-9585.2003.03.003. [55] 周晓, 黄菲. 2015.中国极端高温事件的年代际突变及其与海温的关系[J].中国海洋大学学报, 45 (5):19-27. doi: 10.16441/j.cnki.hdxb.20140057Zhou Xiao, Huang Fei. 2015. Decadal shift of the extreme high temperature in China and its relationship with sea surface temperature[J]. Periodical of Ocean University of China (in Chinese), 45 (5):19-27, doi: 10.16441/j.cnki.hdxb.20140057. [56] 朱益民, 杨修群. 2003.太平洋年代际振荡与中国气候变率的联系[J].气象学报, 61 (6):641-654. doi: 10.3321/j.issn:0577-6619.2003.06.001Zhu Yimin, Yang Xiuqun. 2003. Relationships between Pacific Decadal Oscillation (PDO) and climate variabilities in China[J]. Acta Meteorologica Sinica (in Chinese), 61 (6):641-654, doi: 10.3321/j.issn:0577-6619.2003.06.001. [57] 左金清, 李维京, 任宏利, 等. 2012.春季北大西洋涛动与东亚夏季风年际关系的转变及其可能成因分析[J].地球物理学报, 55 (2):384-395. doi: 10.6038/j.issn.0001-5733.2012.02.003Zuo Jinqing, Li Weijing, Ren Hongli, et al. 2012. Change of the relationship between spring NAO and East Asian summer monsoon and its possible mechanism[J]. Chinese Journal of Geophysics (in Chinese), 55 (2):384-395, doi: 10.6038/j.issn.0001-5733.2012.02.003. [58] Zhou Y Q, Ren G Y. 2011. Change in extreme temperature event frequency over mainland China, 1961-2008[J]. Climate Research, 50 (2-3):125-139, doi: 10.3354/cr01053. -