Impact of the East-West Phase of South Asia High on Water Vapor Distribution near Tropopause over the Asian Monsoon Region
-
摘要: 基于1958~2002年欧洲中期数值预报中心(ECMWF)提供的ERA-40再分析资料和美国气象环境预报中心/美国国家大气研究中心提供的NCEP/NCAR再分析资料研究了夏季南亚高压的东西偏向与亚洲季风区对流层顶附近水汽输送之间的关系。结果表明:(1)南亚高压的东西偏向对上对流层200 hPa水汽高值中心的位置影响较小,主要影响其强度,对100 hPa水汽高值中心的位置和强度有着较强的影响,而对平流层下部70 hPa的水汽分布几乎没有影响。(2)南亚高压偏东年,高原上空和高原南部的垂直上升运动较强,在西风急流的共同作用下可将低层丰富的水汽向上输送,使200 hPa和100 hPa的水汽高值中心位于高原上空,而100 hPa南亚高压范围内偏北风和偏东风增强,在水平输送的作用下使高值中心周围水汽的分布形态与高压中心的分布形态一致。(3)南亚高压偏西年,沿着高原西部的地形抬升作用比高原上空的对流上升运动更强,西风急流北移,对流层顶附近在60°E~80°E范围内形成气旋式环流,因此水汽高值中心向西偏移到伊朗高原。(4)南亚高压范围内200 hPa的温度异常分布与水汽的异常分布一致,暖中心有利于高水汽的生成。而100 hPa的温度异常分布与水汽异常分布相反,暖中心对应异常偏低的水汽,说明南亚高压范围内下平流层的水汽分布受环流场和温度场共同作用的影响。该研究对理解南亚高压东西偏向机制及提高亚洲气候预测有一定的参考意义。Abstract: Based on the ERA-40 reanalysis data provided by the European Center for Medium-Range Weather Forecasts (ECMWF) from 1958 to 2002 and the NCEP/NCAR reanalysis data provided by the National Centers for Environmental Prediction and the National Center for Atmospheric Research, we study the relationship between the east-west phase of the South Asia High (SAH) and water vapor distribution near the tropopause over Asian monsoon region. The results show that the east-west phase of the SAH is correlated with the intensity of high water vapor center at 200 hPa and has an obvious impact on the intensity and location of high water vapor center at 100 hPa, but it has almost no effect on the intensity and location of water vapor at 70 hPa. During the east phase of the SAH, the high value centers of water vapor at 200 hPa and 100 hPa both are located over the Tibetan Plateau, which are related to strong ascending motion and the subtropical westerly jet that transport water vapor to near tropopause over the Tibetan Plateau. At 100 hPa, the strong northerly and easterly winds play an important role for horizontal transport of water vapor, which explains why the spatial distribution of water vapor and its high value center are similar to that of pressure. During the west phase of the SAH, the center of high water vapor shifts westward to Iranian Plateau because of the strong ascending motion resulted from the terrain lifting effect along the western Tibetan Plateau and the northward displacement of the westerly jet. The distribution of temperature anomaly is consistent with that of water vapor, and the warm center is favorable for the generation of high moisture at 200 hPa in SAH. The distribution of temperature anomaly is contrary to that of water vapor and the warm center corresponds to low water vapor at 100 hPa, indicating that the distribution of water vapor in the stratosphere in SAH is influenced by the interaction of the circulate and temperature fields. The present study is helpful for understanding the mechanism of the east-west phase of the SAH and improving the quality of climate forecast.
-
Key words:
- South Asia high /
- East-west phase /
- Water vapor /
- Mass transport
-
图 1 (a)1958~2002年南亚高压东西偏向标准化指数的时间演变;南亚高压(b)异常偏东年和(c)异常偏西年夏季200 hPa位势高度场合成
Figure 1. (a) Time series of the SAHI (South Asia High Index) from 1958 to 2002; composites of the geopotential height at 200 hPa in summer during the years with (b) the east phase and (c) the west phase of the SAH (South Asia High)
图 5 100 hPa环流场(箭头)和垂直速度异常合成(填色):(a)南亚高压偏东年;(b)南亚高压偏西年;(c)南亚高压偏东年与偏西年的差值
Figure 5. Composites of abnormal wind (arrows) and vertical velocity (shadings) at 100 hPa: (a) Years with the east phase of SAH; (b) years with the west phase of SAH; (c) differences between the years with the east phase and west phase of SAH
图 8 南亚高压(a)偏东年(沿90°E)和(b)偏西年(沿62.5°E)的水汽比湿(填色)、风场(矢量箭头,水平风速单位:m/s,垂直风速单位:-10-2 Pa/s)和纬向风(白色等值线,单位:m/s)合成的经向—垂直剖面
Figure 8. Composites of vertical–meridional cross sections of specific humidity (shadings), vertical circulation (arrows, horizontal wind units: m/s, vertical wind units: -10-2 Pa/s), and zonal wind (white isolines, units: m/s) in years with (a) the east phase (along 90°E) and (b) the west phase (along 62.5°E) of the SAH
图 9 南亚高压(a)偏东年(沿27.5°N)和(b)偏西年(沿30°N)的水汽比湿(填色)、风场(矢量箭头,水平风速单位:m/s,垂直风速单位:−10-2 Pa/s)和经向风(白色等值线,单位:m/s)合成的纬向—垂直剖面
Figure 9. Composites of height–latitude cross sections of specific humidity (shadings), vertical circulation (arrows, horizontal wind units: m/s, vertical wind units:−10-2 Pa/s), and meridional wind (white isolines, units: m/s) in years with (a) the east phase (along 27.5°N) and (b) the west phase (along 30°N) of the SAH
-
[1] 陈斌, 徐祥德, 施晓晖. 2011.南亚高压对亚洲季风区夏季对流层上层水汽异常分布的动力效应[J].气象学报, 69 (3):464-471. doi: 10.11676/qxxb2011.040Chen Bin, Xu Xiangde, Shi Xiaohui. 2011. A study of the dynamic effect of the South Asian high on the upper troposphere water vapor abnormal distribution over the Asian monsoon region in boreal summer[J]. Acta Meteorologica Sinica (in Chinese), 69 (3):464-471, doi: 10.11676/qxxb2011.040. [2] 陈斌, 徐祥德, 杨帅, 等. 2012.夏季青藏高原地区近地层水汽进入平流层的特征分析[J].地球物理学报, 55 (2):406-414. doi: 10.6038/j.issn.0001-5733.2012.02.005Chen Bin, Xu Xiangde, Yang Shuai, et al. 2012. On the characteristics of water vapor transport from atmosphere boundary layer to stratosphere over Tibetan Plateau regions in summer[J]. Chinese Journal of Geophysics (in Chinese), 55 (2):406-414, doi: 10.6038/j.issn.0001-5733.2012.02.005. [3] Fu R, Hu Y L, Wright J S, et al. 2006. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 103:5664-5669, doi:10.1073/pnas. 0601584103. [4] Fueglistaler S, Bonazzola M, Haynes P H, et al. 2005. Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics[J]. J. Geophys. Res., 110:D08107, doi: 10.1029/2004JD005516. [5] 胡景高, 陶丽, 周兵. 2010.南亚高压活动特征及其与我国东部夏季降水的关系[J].高原气象, 29 (1):128-136. http://www.cqvip.com/QK/91655X/201001/33035344.htmlHu Jinggao, Tao Li, Zhou Bing. 2010. Characteristic of South Asia high activity and its relation with the precipitation of East China in summer[J]. Plateau Meteorology (in Chinese), 29 (1):128-136. http://www.cqvip.com/QK/91655X/201001/33035344.html [6] 黄燕燕, 钱永甫. 2004.长江流域、华北降水特征与南亚高压的关系分析[J].高原气象, 23 (1):68-74. doi: 10.3321/j.issn:1000-0534.2004.01.010Huang Yanyan, Qian Yongfu. 2004. Relationship between South Asian high and characteristic of precipitation in mid-and lower-reaches of Yangtze River and North China[J]. Plateau Meteorology (in Chinese), 23 (1):68-74, doi:10.3321/j.issn:1000-0534. 2004.01.010. [7] Liu X F, Zhu Q G, Guo P W. 2000. Conversion characteristics between barotropic and baroclinic circulations of the SAH in its seasonal evolution[J]. Advances in Atmospheric Sciences, 17 (1):129-139, doi: 10.1007/s00376-000-0049-y. [8] 罗四维, 钱正安, 王谦谦. 1982.夏季100毫巴青藏高压与我国东部旱涝关系的天气气候研究[J].高原气象, 1 (2):1-10. http://www.oalib.com/paper/4182513Luo Siwei, Qian Zheng'an, Wang Qianqian. 1982. The climatic and synoptical study about the relation between the Qinghai-Xizang high pressure on the 100 mb surface and the flood and drought in East China in summer[J]. Plateau Meteorology (in Chinese), 1 (2):1-10. http://www.oalib.com/paper/4182513 [9] Mason R B, Anderson C E. 1963. The development and decay of the 100-mb summertime anticyclone over southern Asia[J]. Mon. Wea. Rev., 91 (1):3-12, doi:10.1175/1520-0493(1963)091<0003:TDADOT>2.3.CO;2. [10] Park M, Randel W J, Gettelman A, et al. 2007. Transport above the Asian summer monsoon anticyclone inferred from aura microwave limb sounder tracers[J]. J. Geophys. Res., 112 (D16):D16309, doi: 10.1029/2006jd008294. [11] Park M, Randel W J, Emmons L K, et al. 2008. Chemical isolation in the Asian monsoon anticyclone observed in atmospheric chemistry experiment (ACE-FTS) data[J]. Atmospheric Chemistry and Physics, 8:757-764, doi: 10.5194/acp-8-757-2008. [12] 钱永甫, 张琼, 张学洪. 2002.南亚高压与我国盛夏气候异常[J].南京大学学报(自然科学版), 38 (3):295-307. doi: 10.3321/j.issn:0469-5097.2002.03.004Qian Yongfu, Zhang Qiong, Zhang Xuehong. 2002. The South Asian high and its effects on China's mid-summer climate abnormality[J]. Journal of Nanjing University (Natural Science) (in Chinese), 38 (3):295-307, doi: 10.3321/j.issn:0469-5097.2002.03.004. [13] Randel W J, Park M. 2006. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS)[J]. J.Geophys. Res., 111 (D12):D12314, doi: 10.1029/2005JD006490. [14] Rosenlof K H. 2003. How water enters the stratosphere[J]. Science, 302 (5651):1691-1692, doi: 10.1126/science.1092703. [15] 谭晶, 杨辉, 孙淑清, 等. 2005.夏季南亚高压东西振荡特征研究[J].南京气象学院学报, 28 (4):452-460. doi: 10.3969/j.issn.1674-7097.2005.04.003Tan Jing, Yang Hui, Sun Shuqing, et al. 2005. Characteristics of the longitudinal oscillation of South Asia high during summer[J]. Journal of Nanjing Institute of Meteorology (in Chinese), 28 (4):452-460, doi:10.3969/j.issn.1674-7097.2005.04. 003. [16] 陶诗言, 朱福康. 1964.夏季亚洲南部100毫巴流型的变化及其与西太平洋副热带高压进退的关系[J].气象学报, 34 (4):385-396. doi: 10.11676/qxxb1964.039Tao Shiyan, Zhu Fukang. 1964. The 100-mb flow patterns in southern Asia in summer and its relation to the advance and retreat of the West-Pacific subtropical anticyclone over the far east[J]. Acta Meteorologica Sinica (in Chinese), 34 (4):385-396, doi: 10.11676/qxxb1964.039. [17] Tian W S, Chipperfield M P. 2006. Stratospheric water vapor trends in a coupled chemistry-climate model[J]. Geophys. Res. Lett., 33 (6):L06819, doi: 10.1029/2005GL024675. [18] Tian W S, Tian H Y, Dhomse S, et al. 2011. A study of upper troposphere and lower stratosphere water vapor above the Tibetan Plateau using AIRS and MLS data[J]. Atmospheric Science Letters, 12:233-239, doi:10. 1002/asl.319. [19] 魏维. 2012. 南亚高压位置的经向和纬向变化与印度季风以及中国夏季降水的关系[D]. 中国气象科学研究院硕士学位论文.Wei Wei. 2012. The meridional variation and the zonal variation of the South Asian High and the relationship with the summer precipitation over China[D]. M. S. thesis (in Chinese), Chinese Academy of Meteorological Sciences. [20] 薛旭, 陈文. 2015.南亚高压在中南半岛上空建立过程及其与亚洲南部夏季风建立的关系[J].大气科学, 39 (4):705-721. doi: 10.3878/j.issn.1006-9895.1410.14147Xue Xu, Chen Wen. 2015. Establishment process commencement of the south Asian high over the Indo-China peninsula and its relationship with the onset of the Asian summer monsoon[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39 (4):705-721, doi: 10.3878/j.issn.1006-9895.1410.14147. [21] Yan R C, Bian J C, Fan Q J. 2011. The impact of the South Asia high bimodality on the chemical composition of the upper troposphere and lower stratosphere[J]. Atmospheric and Oceanic Science Letters, 4:229-234, doi: 10.1080/16742834.2011.11446934. [22] 占瑞芬, 李建平. 2008.青藏高原和热带西北太平洋大气热源在亚洲地区夏季平流层-对流层水汽交换的年代际变化中的作用[J].中国科学D辑:地球科学, 38 (8):1028-1040. http://www.oalib.com/paper/4150582Zhan Ruifen, Li Jianping. 2008. Influence of atmospheric heat sources over the Tibetan Plateau and the tropical western North Pacific on the inter-decadal variations of the strato-sphere-troposphere exchange of water vapor[J]. Science in China Series D:Earth Sciences, 51 (8):1179-1193. http://www.oalib.com/paper/4150582 [23] 张岱乐, 卞建春, 杨军. 2014.上对流层/下平流层水物质分布与输送特征[J].气象与环境学报, 30 (5):49-56. doi: 10.3969/j.issn.1673-503X.2014.05.007Zhang Daile, Bian Jianchun, Yang Jun. 2014. Water vapor distribution and transport characteristics in the upper troposphere and lower stratosphere[J]. Journal of Meteorology and Environment (in Chinese), 30 (5):49-56, doi: 10.3969/j.issn.1673-503X.2014.05.007. [24] 张琼, 钱永甫, 张学洪. 2000.南亚高压的年际和年代际变化[J].大气科学, 24 (1):67-68. doi: 10.3878/j.issn.1006-9895.2000.01.07Zhang Qiong, Qian Yongfu, Zhang Xuehong. 2000. Interannual and interdecadal variations of the South Asia high[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24 (1):67-68, doi: 10.3878/j.issn.1006-9895.2000.01.07. [25] 赵振国. 1999.中国夏季旱涝及环境场[M].北京:气象出版社, 56-65.Zhao Zhenguo. 1999. Drought and Flood in Summer in China and the Environment Field (in Chinese)[M]. Beijing:China Meteorological Press, 56-65. -