高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两类El Niño型对西北太平洋季风槽及热带气旋生成的可能影响

张宏杰 武亮 黄荣辉

张宏杰, 武亮, 黄荣辉. 两类El Niño型对西北太平洋季风槽及热带气旋生成的可能影响[J]. 气候与环境研究, 2018, 23(2): 150-160. doi: 10.3878/j.issn.1006-9585.2017.17055
引用本文: 张宏杰, 武亮, 黄荣辉. 两类El Niño型对西北太平洋季风槽及热带气旋生成的可能影响[J]. 气候与环境研究, 2018, 23(2): 150-160. doi: 10.3878/j.issn.1006-9585.2017.17055
Hongjie ZHANG, Liang WU, Ronghui HUANG. Possible Impacts of Two Types of El Niño Events on the Western North Pacific Monsoon Trough and Tropical Cyclogenesis[J]. Climatic and Environmental Research, 2018, 23(2): 150-160. doi: 10.3878/j.issn.1006-9585.2017.17055
Citation: Hongjie ZHANG, Liang WU, Ronghui HUANG. Possible Impacts of Two Types of El Niño Events on the Western North Pacific Monsoon Trough and Tropical Cyclogenesis[J]. Climatic and Environmental Research, 2018, 23(2): 150-160. doi: 10.3878/j.issn.1006-9585.2017.17055

两类El Niño型对西北太平洋季风槽及热带气旋生成的可能影响

doi: 10.3878/j.issn.1006-9585.2017.17055
基金项目: 

国家自然科学基金 41475077

国家自然科学基金 41461164005

国家自然科学基金 41375065

国家重点基础研究发展规划项目 2014CB953900

中国科学院青年创新促进会项目 2017106

详细信息
    作者简介:

    张宏杰, 男, 1991年出生, 硕士研究生, 主要从事ENSO与西北太平洋热带气旋的研究。E-mail: zhj@mail.iap.ac.cn

    通讯作者:

    武亮, E-mail: wul@mail.iap.ac.cn

  • 中图分类号: P425.4.2

Possible Impacts of Two Types of El Niño Events on the Western North Pacific Monsoon Trough and Tropical Cyclogenesis

Funds: 

National Natural Science Foundation of China 41475077

National Natural Science Foundation of China 41461164005

National Natural Science Foundation of China 41375065

National Basic Research Program of China 2014CB953900

the Youth Innovation Promotion Association of Chinese Academy of Sciences 2017106

  • 摘要: 通过对1948~2015年不同El Niño事件下西北太平洋季风槽变化和热带气旋(tropical cyclone,TC)生成进行分析,初步探讨了不同El Niño型事件对季风槽及其对TC的可能影响。分析结果表明,较东太平洋增暖(eastern Pacific warming,EPW)年,中太平洋增暖(central Pacific warming,CPW)年季风槽偏弱,位置相对偏西、偏北。在CPW年,中(西和东)太平洋海温增暖(降低)引起了从中到西太平洋热带地区的西风异常和中太平洋地区上升运动及对流活动加强,使得季风槽加强东伸,同时西太平洋副高偏弱、偏北,季风槽向北推进;而在EPW年,赤道东(西)太平洋海温增暖(降低)使得赤道地区西风异常显著加强东扩,异常Walker环流的上升支东移至东太平洋,季风活动加强,副高偏强、偏南,这使得季风槽较CPW年相比更强、更偏东。利于TC生成的大尺度环境因子随季风槽强度和位置的变化而发生改变,在CPW年,低层气旋性涡度、高层辐散、高的中层相对湿度以及低垂直风切变区随着季风槽向北移动;而在EPW年,这些因子随季风槽向南、向东偏移。这些大尺度环境因子的变化使得西北太平洋TC生成的位置在CPW年比EPW年更加偏北、偏西。
  • 图  1  (a) 1948~2015年7~11月EMI指数与Niño3指数的时间序列;(b)CPW事件和(c)EPW事件7~11月海表温度距平(SST anomaly, SSTA)合成

    Figure  1.  (a) Time series of EMI index and Niño3 index during Jul-Nov of 1948-2015 and composite SST anomaly (SSTA) during Jul-Nov of (b) central Pacific warming (CPW) episodes and (c) eastern Pacific warming (EPW) episodes

    图  2  CPW事件和EPW事件在7~11月850 hPa流场与OLR场合成(红色虚线表示西北太平洋季风槽的槽线)

    Figure  2.  Composite 850-hPa streamlines and outgoing longwave radiation (OLR) during Jul-Nov of CPW episodes and EPW episodes [monsoon trough line over the Western North Pacific (WNP) is denoted by the red dashed line]

    图  3  (a) CPW事件和(b)EPW事件在7~11月平均850 hPa距平风场(箭头)、OLR距平场(填色)及海平面气压距平场(等值线,单位:hPa)合成;(c)CPW事件与EPW事件的差异场。红色风矢量表示通过90%信度水平

    Figure  3.  Composite anomalies of 850-hPa winds, OLR (shadings) and sea level pressure (contours, units: hPa) during Jul-Nov of (a) CPW episodes and (b) EPW episodes; (c) the difference between CPW years and EPW years. Wind vectors in red indicate significance above the 90% confidence level

    图  4  (a) CPW事件和(b)EPW事件在7~11月0°~5°N平均的纬向—垂直环流距平场的剖面;(c)CPW事件与EPW事件的差异场(阴影区通过90%的信度检验)

    Figure  4.  Composite zonal-vertical circulation anomalies averaged over 0°–5°N during Jul-Nov of (a) CPW episodes and (b) EPW episodes; (c) the difference between CPW episodes and EPW episodes (shadings indicate the anomalies or differences significant above the 90% confidence level)

    图  5  图 4,但为135°E~170°E平均经向环流剖面

    Figure  5.  Same as Fig. 4, but for the meridional circulation anomalies averaged over 135°E–170°E

    图  6  (a) CPW事件和EPW事件在7~11月平均500 hPa位势高度场(5870 gpm、5875 gpm、5880 gpm)合成(单位:m,红色实线、蓝色实线、黑色虚线等值线分别表示CPW年、EPW年以及气候态下位势高度场的分布)以及(b)CPW事件和EPW事件位势高度场的差异(阴影区通过90%信度检验)

    Figure  6.  (a) Composite 500-hPa geopotential height field (m) averaged over Jul-Nov of CPW episodes and EPW episodes (red lines, blue lines, and dotted lines denote the geopotential height fields (5870 gpm, 5875 gpm, and 5880 gpm) during CPW episodes, EPW episodes, and the climatological state, respectively); (b) the difference of 500-hPa geopotential height field between CPW episodes and EPW episodes (significant values above the 90% confidence level are shaded)

    图  7  CPW事件和EPW事件在7~11月平均低层流场(流线,单位:m/s)与850 hPa涡度距平场(填色)合成(黑色点表示在7~11月生成的TC位置,红色点表示TC生成的平均位置)

    Figure  7.  Composite surface winds (streamlines, units: m/s) and 850-hPa relative vorticity anomalies (shadings) during Jul-Nov of CPW episodes and EPW episodes (black dots represent locations of TC genesis during Jul-Nov and red dot represents mean location of TC genesis)

    图  8  (a) CPW事件和(b)EPW事件在7~11月平均SST(填色)和SSTA合成(等值线)以及(c)两者SST的差异场(单位:℃);(d)CPW事件和(e)EPW事件在7~11月500~700 hPa相对湿度(填色)及其距平(等值线)合成以及(f)两者500~700 hPa相对湿度的差异场(%);(g)CPW事件和(h)EPW事件在7~11月平均OLR场(填色)和OLR距平场(等值线)合成以及(i)两者OLR的差异场(单位:W/m2。灰色阴影区表示通过90%信度检验

    Figure  8.  Composite mean (a) SST (shading) and (b) SSTA (contours) during Jul-Nov of CPW episodes and EPW episodes (units: ℃); (c) the difference in SST between CPW episodes and EPW episodes. The mean 500-700 hPa relative humidity and its anomalies (%) during Jul-Nov of (d) CPW episodes and (e) EPW episodes. (f) The difference in the relative humidity between CPW episodes and EPW episodes. The mean OLR and its anomalies (units: W/m2) during (g) CPW episodes and (h) EPW episodes; (i) the difference in OLR between CPW episodes and EPW episodes. Significant values above the 90% confidence level are shaded

    图  9  (a) CPW事件和(b)EPW事件在7~11月850 hPa涡度场(填色)及其距平场(等值线)合成以及(c)CPW事件与EPW事件涡度场的差异场(单位:10-6 s-1);(d)CPW事件和(e)EPW事件在7~11月200 hPa散度场(填色)及其距平场(等值线)合成以及(f)散度的差异场(单位:10-6 s-1);(g)CPW事件和(h)EPW事件在7~11月200~850 hPa垂直风切变(填色)及其距平场(等值线)合成以及(i)垂直风切变的差异场(单位:m/s)。灰色阴影区表示通过90%信度检验

    Figure  9.  Composite mean 850-hPa vorticity (shading) and its anomalies (contours) during Jul-Nov of (a) CPW episodes and (b) EPW episodes; (c) the difference in vorticity between CPW episodes and EPW episodes (units: 10-6 s-1). The mean 200-hPa divergence and its anomalies (units: 10-6 s-1) during Jul-Nov of (d) CPW episodes and (e) EPW episodes; (f) the difference in the divergence. The mean 200-850 hPa vertical wind shear and its anomalies (units: m/s) during (g) CPW episodes and (h) EPW episodes; (i) the difference in the vertical wind shear. Significant values above the 90% confidence level are shaded

  • [1] Ashok K, Behera S K, Rao S A, et al. 2007. El Niño Modoki and its possible teleconnection[J]. J. Geophys. Res.:Oceans, 112 (C11):C11007, doi: 10.1029/2006JC003798.
    [2] Ashok K, Yamagata T. 2009. Climate change:The El Niño with a difference[J]. Nature, 461 (7263):481-484, doi: 10.1038/461481a.
    [3] Bjerknes J. 1969. Atmospheric teleconnections from the Equatorial Pacific[J]. Mon. Wea. Rev., 97 (3):163-172, doi:10.1175/1520-0493(1969) 097<0163:ATFTEP>2.3.CO;2.
    [4] Camargo S J, Sobel A H. 2005. Western North Pacific tropical cyclone intensity and ENSO[J]. J. Climate, 18 (15):2996-3006, doi: 10.1175/JCLI3457.1.
    [5] Chan J C L. 2000. Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events[J]. J. Climate, 13 (16):2960-2972, doi:10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.
    [6] Chan J C L, Liu K S. 2004. Global warming and western North Pacific typhoon activity from an observational perspective[J]. J. Climate, 17 (23):4590-4602, doi: 10.1175/3240.1.
    [7] Chen G H, Tam C Y. 2010. Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific[J]. Geophys. Res. Lett., 37 (1):L01803, doi: 10.1029/2009GL041708.
    [8] Chen T C, Weng S P, Yamazaki N, et al. 1998. Interannual variation in the tropical cyclone formation over the western North Pacific[J]. Mon. Wea. Rev., 126 (4):1080-1090, doi:10.1175/1520-0493(1998)126<1080:IVITTC>2.0.CO;2.
    [9] Chen T C, Wang S Y, Yen M C. 2006. Interannual variation of the tropical cyclone activity over the western North Pacific[J]. J. Climate, 19 (21):5709-5720, doi: 10.1175/JCLI3934.1.
    [10] Cheung K K W. 2004. Large-scale environmental parameters associated with tropical cyclone formations in the western North Pacific[J]. J. Climate, 17 (3):466-484, doi:10.1175/1520-0442(2004)017<0466:LEPAWT>2.0.CO;2.
    [11] Chia H H, Ropelewski C F. 2002. The interannual variability in the genesis location of tropical cyclones in the northwest Pacific[J]. J. Climate, 15 (20):2934-2944, doi:10.1175/1520-0442(2002)015<2934:TIVITG>2.0.CO;2.
    [12] Feng J, Wang L, Chen W, et al. 2010. Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter[J]. J. Geophys. Res.:Atmos., 115 (D24):D24122, doi: 10.1029/2010JD014761.
    [13] 冯涛, 黄荣辉, 陈光华, 等. 2013.近年来关于西北太平洋热带气旋和台风活动的气候学研究进展[J].大气科学, 37 (2):364-382. doi: 10.3878/j.issn.1006-9895.2012.12307

    Feng Tao, Huang Ronghui, Chen Guanghua, et al. 2013. Progress in recent climatological research on tropical cyclone activity over the western North Pacific[J]. Chinese Journal of Atomspheric Sciences (in Chinese), 37 (2):364-382, doi: 10.3878/j.issn.1006-9895.2012.12307.
    [14] Feng T, Chen G H, Huang R H, et al. 2014. Large-scale circulation patterns favourable to tropical cyclogenesis over the western North Pacific and associated barotropic energy conversions[J]. International Journal of Climatology, 34 (1):216-227, doi: 10.1002/joc.3680.
    [15] 冯涛, 黄荣辉, 杨修群, 等. 2016. 2004年与2006年7~9月西北太平洋上空大尺度环流场与天气尺度波动的差别及其对热带气旋生成的影响[J].大气科学, 40 (1):157-175. doi: 10.3878/j.issn.1006-9895.1505.14162

    Feng Tao, Huang Ronghui, Yang Xiuqun, et al. 2016. Differences between the large-scale circulations and synoptic-scale waves in July-September 2004 and those in 2006 and their impacts on tropical cyclogenesis over the western North Pacific[J]. Chinese Journal of Atomspheric Sciences (in Chinese), 40 (1):157-175, doi: 10.3878/j.issn.1006-9895.1505.14162.
    [16] Frank W M. 1987. Tropical cyclone formation. A global view of tropical cyclones[M]. Elberry R L, Ed., Office of Naval Research, 53-90.
    [17] 高建芸, 张秀芝, 江志红, 等. 2008.西北太平洋季风槽异常与热带气旋活动[J].海洋学报, 30 (3):35-47. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hyxb200803005

    Gao Jianyun, Zhang Xiuzhi, Jiang Zhihong, et al. 2008. Anomalous western North Pacific monsoon trough and tropical cyclone activities[J]. Acta Oceanologica Sinica (in Chinese), 30 (3):35-47. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hyxb200803005
    [18] Gray W M. 1979. Hurricanes: Their formation, structure and likely role in the tropical circulation[C]//Meteorology over the Tropical Oceans. Bracknell, UK: Royal Meteorological Society, 155-218.
    [19] Hong C C, Li Y H, Li T, et al. 2011. Impacts of central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the western North Pacific[J]. Geophys. Res. Lett., 38 (16):L16712, doi: 10.1029/2011GL048821.
    [20] 黄荣辉, 傅云飞, 臧晓云. 1996.亚洲季风与ENSO循环的相互作用[J].气候与环境研究, 1 (1):38-54. doi: 10.3878/j.issn.1006-9585.1996.01.05

    Huang Ronghui, Fu Yunfei, Zhan Xiaoyun. 1996. Asian monsoon and ENSO cycle interaction[J]. Climatic and Environmental Research (in Chinese), 1 (1):38-54, doi: 10.3878/j.issn.1006-9585.1996.01.05.
    [21] 黄荣辉, 陈文. 2002.关于亚洲季风与ENSO循环相互作用研究最近的进展[J].气候与环境研究, 7 (2):146-159. doi: 10.3878/j.issn.1006-9585.2002.02.03

    Huang Ronghui, Chen Wen. 2002. Recent progresses in the research on the interaction between Asian monsoon and ENSO cycle[J]. Climatic and Environmental Research (in Chinese), 7 (2):146-159, doi: 10.3878/j.issn.1006-9585.2002.02.03.
    [22] 黄荣辉, 陈光华. 2007.西北太平洋热带气旋移动路径的年际变化及其机理研究[J].气象学报, 65 (5):683-694. doi: 10.11676/qxxb2007.064

    Huang Ronghui, Chen Guanghua. 2007. Research on interannual variations of tracks of tropical cyclones over Northwest Pacific and their physical mechanism[J]. Acta Meteorologica Sinica (in Chinese), 65 (5):683-694, doi: 10.11676/qxxb2007.064.
    [23] Huang R H, Chen J L, Wang L, et al. 2012. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system[J]. Advances in Atmospheric Sciences, 29 (5):910-942, doi: 10.1007/s00376-012-2015-x.
    [24] 黄荣辉, 皇甫静亮, 武亮, 等. 2016.关于西北太平洋季风槽年际和年代际变异及其对热带气旋生成影响和机理的研究[J].热带气象学报, 32 (6):767-785. https://www.cnki.com.cn/qikan-RDQX201606001.html

    Huang Ronghui, Huangfu Jingliang, Wu Liang, et al. 2016. Research on the interannual and interdecadal variabilities of the monsoon trough and their impacts on tropical cyclone genesis over the western North Pacific[J]. Journal of Tropical Meteorology (in Chinese), 32 (6):767-785. https://www.cnki.com.cn/qikan-RDQX201606001.html
    [25] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project[J]. Bull. Amer. Meteor. Soc., 77 (3):437-471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
    [26] Kim H M, Webster P J, Curry J A. 2009. Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones[J]. Science, 325 (5936):77-80, doi: 10.1126/science.1174062.
    [27] Knapp K R, Kruk M C, Levinson D H, et al. 2010. The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data[J]. Bull. Amer. Meteor. Soc., 91 (3):363-376, doi: 10.1175/2009BAMS2755.1.
    [28] Lee T, McPhaden M J. 2010. Increasing intensity of El Niño in the central-equatorial Pacific[J]. Geophys. Res. Lett., 37 (14):L14603, doi: 10.1029/2010GL044007.
    [29] Liebmann B, Smith C A. 1996. Description of a complete (interpolated) outgoing longwave radiation dataset[J]. Bull. Amer. Meteor. Soc., 77:1275-1277. http://citeseerx.ist.psu.edu/showciting?cid=2773917
    [30] McBride J L. 1995. Tropical cyclone formation[C]//Global Perspectives on Tropical Cyclones. World Meteorological Organization, 63-105.
    [31] Molinari J, Vollaro D. 2013. What percentage of western North Pacific tropical cyclones form within the monsoon trough?[J]. Mon. Wea. Rev., 141 (2):499-505, doi: 10.1175/MWR-D-12-00165.1.
    [32] Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. J. Geophys. Res.:Atmos., 108 (D14):4407, doi: 10.1029/2002JD002670.
    [33] Wang C Z, Li C X, Mu M, et al. 2013. Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific[J]. Climate Dyn., 40 (11-12):2887-2902, doi: 10.1007/s00382-012-1434-9.
    [34] 王慧, 丁一汇, 何金海. 2006.西北太平洋夏季风的变化对台风生成的影响[J].气象学报, 64 (3):345-356. doi: 10.11676/qxxb2006.033

    Wang Hui, Ding Yihui, He Jinhai. 2006. Influence of western North Pacific summer monsoon changes on typhoon genesis[J]. Acta Meteorologica Sinica (in Chinese), 64 (3):345-356, doi: 10.11676/qxxb2006.033.
    [35] Wu L, Wen Z P, Huang R H. 2011. A primary study of the correlation between the net air-sea heat flux and the interannual variation of western North Pacific tropical cyclone track and intensity[J]. Acta Oceanologica Sinica, 30 (6):27-35, doi: 10.1007/s13131-011-0158-8.
    [36] Wu L, Wen Z P, Huang R H, et al. 2012. Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific[J]. Mon. Wea. Rev., 140 (1):140-150, doi: 10.1175/MWR-D-11-00078.1.
    [37] Wu L, Chou C, Chen C T, et al. 2014. Simulations of the present and late-twenty-first-century western North Pacific tropical cyclone activity using a regional model[J]. J. Climate, 27 (9):3405-3424, doi: 10.1175/JCLI-D-12-00830.1.
    [38] Yeh S W, Kug J S, Dewitte B, et al. 2009. El Niño in a changing climate[J]. Nature, 461 (7263):511-514, doi: 10.1038/nature08316.
    [39] 张翔, 武亮, 皇甫静亮, 等. 2017.西北太平洋季风槽的季节和年际变化特征及其与热带气旋生成大尺度环境因子的联系[J].气候与环境研究, 22 (4):418-434. doi: 10.3878/j.issn.1006-9585.2016.16065

    Zhang Xiang, Wu Liang, Huangfu Jingliang, et al. 2017. Seasonal and interannual variability of the western North Pacific monsoon trough and its relationship to lage-scale environmental factors[J]. Climatic and Environmental Research (in Chinese), 22 (4):418-434, doi: 10.3878/j.issn.1006-9585.2016.16065.
  • 加载中
图(9)
计量
  • 文章访问数:  1321
  • HTML全文浏览量:  23
  • PDF下载量:  1495
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-29
  • 网络出版日期:  2017-05-08
  • 刊出日期:  2018-03-20

目录

    /

    返回文章
    返回