高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2000~2016年青藏高原地表反照率时空分布及动态变化

陈爱军 曹晓云 韩琛惠 郑照军 刘玉洁 卞林根

陈爱军, 曹晓云, 韩琛惠, 郑照军, 刘玉洁, 卞林根. 2000~2016年青藏高原地表反照率时空分布及动态变化[J]. 气候与环境研究, 2018, 23(3): 355-365. doi: 10.3878/j.issn.1006-9585.2017.17113
引用本文: 陈爱军, 曹晓云, 韩琛惠, 郑照军, 刘玉洁, 卞林根. 2000~2016年青藏高原地表反照率时空分布及动态变化[J]. 气候与环境研究, 2018, 23(3): 355-365. doi: 10.3878/j.issn.1006-9585.2017.17113
Aijun CHEN, Xiaoyun CAO, Chenhui HAN, Zhaojun ZHENG, Yujie LIU, Lingen BIAN. Spatial-Temporal Distribution and Variation of Land Surface Albedo over the Tibetan Plateau during 2000-2016[J]. Climatic and Environmental Research, 2018, 23(3): 355-365. doi: 10.3878/j.issn.1006-9585.2017.17113
Citation: Aijun CHEN, Xiaoyun CAO, Chenhui HAN, Zhaojun ZHENG, Yujie LIU, Lingen BIAN. Spatial-Temporal Distribution and Variation of Land Surface Albedo over the Tibetan Plateau during 2000-2016[J]. Climatic and Environmental Research, 2018, 23(3): 355-365. doi: 10.3878/j.issn.1006-9585.2017.17113

2000~2016年青藏高原地表反照率时空分布及动态变化

doi: 10.3878/j.issn.1006-9585.2017.17113
基金项目: 

公益性行业(气象)科研专项 GYHY201206040

公益性行业(气象)科研专项 GYHY201306054

详细信息
    作者简介:

    陈爱军, 男, 1972年出生, 副教授, 主要从事气象卫星资料分析与应用研究。E-mail:chenaijun@nuist.edu.cn

  • 中图分类号: P467

Spatial-Temporal Distribution and Variation of Land Surface Albedo over the Tibetan Plateau during 2000-2016

Funds: 

Special Fund for Meteorological Scientific Research in the Public Interest GYHY201206040

Special Fund for Meteorological Scientific Research in the Public Interest GYHY201306054

  • 摘要: 应用MODIS地表反照率产品MCD43C3,结合青藏高原自然带数据、积雪覆盖率和植被指数数据,采用一元线性回归方法分析了2000~2016年青藏高原地表反照率的分布及变化特征,结果表明:1)高原地表反照率空间分布差异大,整体上东南部低、西北部高,受地形和地表覆盖影响较大。2)高原地表反照率四季的空间分布变化明显,高海拔山脉和高寒灌丛草甸是高原地表反照率年内和年际变化的敏感地区。3)高原地表反照率年变化介于0.19~0.26,一定程度上表现为“双峰单谷”型,与地表覆盖类型的季节变化密切相关。4)高原地表反照率年际变化整体呈缓慢波动减小的趋势,平均变率约为-0.4×10-3 a-1,减小的区域约占高原总面积的66%,川西 —藏东针叶林带的西南部地区减小得最快,减小速率超过1.0×10-2 a-1。5)高原地表反照率减小与冰川消融和积雪减少密切相关,高原植被覆盖改善也是一个重要因素。
  • 图  1  青藏高原的(a)数字海拔高程和(b)MODIS IGBP地表分类

    Figure  1.  Spatial distributions of (a) digital elevation and (b) land-cover type from MODIS IGBP (International Geosphere-Biosphere Program) over the TibetanPlateau

    图  2  青藏高原(a)多年平均地表反照率和(b)年均地表反照率标准差的空间分布

    Figure  2.  Spatial distributions of (a)multi-year averaged land surface albedo and (b) standard deviation of annually averaged land surface albedo over the Tibetan Plateau

    图  3  青藏高原(a)春季、(b)夏季、(c)秋季、(d)冬季多年平均地表反照率空间分布

    Figure  3.  Spatial distributions of multi-year averaged land surface albedo over the Tibetan Plateau in (a) spring, (b) summer, (c) autumn, and (d) winter

    图  4  青藏高原(a)春季、(b)夏季、(c)秋季、(d)冬季平均地表反照率标准差空间分布

    Figure  4.  Spatial distributions of standard deviations of land surface albedo over the Tibetan Plateau in (a) spring, (b) summer, (c) autumn, and (d) winter

    图  5  青藏高原地表反照率与(a)积雪覆盖率和(b)植被指数的年变化

    Figure  5.  Annual variations of land surface albedo (a) with snow cover fraction and (b) with vegetation index over the Tibetan Plateau

    图  6  青藏高原(a)年均地表反照率的年际变化速率和(b)通过0.1显著性水平检验的年际变化速率的空间分布

    Figure  6.  Spatial distributions of (a) interannual variation rate of annually averaged land surface albedo and (b) the variation rate that is significant at 0.1 level over the Tibetan Plateau

    图  7  青藏高原(a)年均积雪覆盖率的年际变化速率和(b)年均植被指数年际变化速率空间分布

    Figure  7.  Spatial distributions of interannual variation rates of annually averaged (a) snow cover and (b) vegetation index over the Tibetan Plateau

    图  8  青藏高原不同自然带年均地表反照率的年际变化:(a)时间序列;(b)平均变化速率;(c)标准差

    Figure  8.  Interannual variations of annually averaged surface albedo in different natural geographic zones over the Tibetan Plateau: (a) Time series; (b) averaged changing rate; (c) standard deviation

    图  9  (a)青藏高原整体、(b)果洛那曲地区年均地表反照率和积雪覆盖率的年际变化

    Figure  9.  Interannual variations of annually averaged surface albedo and snow cover over (a) the whole Tibetan Plateau and (b) Guoluo-Naqu area

    表  1  青藏高原自然地带划分(郑度,1996

    Table  1.   Natural geographic zones of the Tibetan Plateau (Zheng, 1996)

    温度带 干湿地区 自然地带
    Ⅰ高原亚寒带 B半湿润地区 ⅠB1 果洛那曲高寒灌丛草甸地带
    C半干旱地区 ⅠC1 青南高寒草甸草原地带
    ⅠC2 羌塘高寒草原地带
    D干旱地区 ⅠD1 昆仑高寒荒漠地带
    Ⅱ高原温带 A/B湿润/半湿润地区 ⅡAB1川西藏东山地针叶林带
    C半干旱地区 ⅡC1 藏南山地灌从草原地带
    ⅡC2 青东祁连山地草原地带
    D干旱地区 ⅡD1 阿里山地荒漠半荒漠地带
    ⅡD2 柴达木山地荒漠地带
    ⅡD3 昆仑北翼山地荒漠地带
    O山地亚热带 A湿润地区 OA1东喜马拉雅南翼山地常绿阔叶林带
    下载: 导出CSV
  • [1] Atlaskina K, Berninger F, De Leeuw G. 2015. Satellite observations of changes in snow-covered land surface albedo during spring in the Northern Hemisphere[J]. The Cryosphere Discussions, 9 (3):2745-2782, doi: 10.5194/tcd-9-2745-2015.
    [2] 蔡福, 周广胜, 李荣平, 等. 2011.陆面过程模型对下垫面参数动态变化的敏感性分析[J].地球科学进展, 26 (3):300-310. doi: 10.11867/j.issn.1001-8166.2011.03.0300

    Cai Fu, Zhou Guangsheng, Li Rongping, et al. 2011. Sensitivity of land surfaces model to dynamic land surface parameters[J]. Advances in Earth Science (in Chinese), 26 (3):300-310, doi: 10.11867/j.issn.1001-8166.2011.03.0300.
    [3] 岑思弦, 巩远发, 赖欣. 2014.青藏高原及其周围地区大气热源对川渝盆地夏季降水的影响[J].高原气象, 33 (5):1182-1189. doi: 10.7522/j.issn.1000-0534.2013.00122

    Cen Sixian, Gong Yuanfa, Lai Xin. 2014. Impact of heat source over Qinghai-Xizang Plateau and its surrounding areas on rainfall in Sichuan-Chongqing basin in summer[J]. Plateau Meteorology (in Chinese), 33 (5):1182-1189, doi: 10.7522/j.issn.1000-0534.2013.00122.
    [4] 陈爱军, 梁学伟, 卞林根, 等. 2012.青藏高原地区MODIS反照率的精度分析[J].大气科学学报, 35 (6):664-672. doi: 10.3969/j.issn.1674-7097.2012.06.005

    Chen Aijun, Liang Xuewei, Bian Lingen, et al. 2012. Assessment on the accuracy of MODIS albedos over the Tibetan Plateau[J]. Transactions of Atmospheric Sciences (in Chinese), 35 (6):664-672, doi: 10.3969/j.issn.1674-7097.2012.06.005.
    [5] 陈爱军, 梁学伟, 卞林根, 等. 2016.青藏高原MODIS地表反照率反演结果的空间分布[J].高原气象, 35 (6):1409-1418. doi: 10.7522/j.issn.1000-0534.2015.00111

    Chen Aijun, Liang Xuewei, Bian Lingen, et al. 2016. Spatial distribution characteristics of MODIS land surface albedo inversions over the Qinghai-Xizang Plateau[J]. Plateau Meteorology (in Chinese), 35 (6):1409-1418, doi: 10.7522/j.issn.1000-0534.2015.00111.
    [6] 除多. 2016. 2000~2014年西藏高原积雪覆盖时空变化[J].高原山地气象研究, 36 (1):27-37. doi: 10.3969/j.issn.1674-2184·2016.01.005

    Chu Duo. 2016. Spatial-temporal variations of snow cover on the Tibet autonomous region from 2000 to 2014 using MODIS data[J]. Plateau and Mountain Meteorology Research (in Chinese), 36 (1):27-37, doi: 10.3969/j.issn.1674-2184·2016.01.005.
    [7] Collins W D, Rasch P J, Boville B A, et al. 2004. Description of the NCAR community atmosphere model (CAM 3. 0)[R]. NCAR Tech. Note NCAR/TN-464+STR, 226.
    [8] Dickinson R E. 1983. Land surface processes and climate-surface albedos and energy balance[J]. Advances in Geophysics, 25:305-353, doi:10. 1016/S0065-2687(08)60176-4.
    [9] Lewis P, Barnsley M J. 1994. Influence of the sky radiance distribution on various formulations of the earth surface albedo[C]//Proceedings of the 6th International Symposium on Physical Measurements and Signatures in Remote Sensing. France: ISPRS, 707-715.
    [10] 孟宪红, 吕世华, 林蟒, 等. 2015. MODIS时空变化地表反照率在我国西北干旱半干旱气候模拟研究中的应用[C]//第32届中国气象学会年会S5干旱陆面过程与气候变化. 天津: 中国气象学会, 1-2.

    Meng Xianhua, Lü Shihua, Lin Mang, et al. 2015. Application about MODIS temporal and spatial variation of surface albedo in the arid northwest China's semi arid climate simulation research[C]//China Meteorological Society Annual Meeting S5 Arid Land Surface Process and Climate Change (in Chinese). Tianjin: Chinese Meteorological Society, 1-2.
    [11] Schaaf C B, Gao F, Strahler A H, et al. 2002. First operational BRDF, albedo nadir reflectance products from MODIS[J]. Remote Sensing of Environment, 83 (1-2):135-148, doi: 10.1016/S0034-4257(02)00091-3.
    [12] Schaaf C B, Liu J C, Gao F, et al. 2011. Aqua and Terra MODIS albedo and reflectance anisotropy products[M]//Ramachandran B, Justice C O, Abrams M J. Land Remote Sensing and Global Environmental Change. New York: Springer, 549-561, doi: 10.1007/978-1-4419-6749-7_24.
    [13] Stokes G M, Schwartz S E. 1994. The Atmospheric Radiation Measurement (ARM) Program:Programmatic background and design of the cloud and radiation test bed[J]. Bull. Amer. Meteor. Soc., 75 (7):1201-1222, doi:10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.
    [14] 王鸽. 2010. 1982~2000年中国区域地表反照率时空分布特征[J].高原气象, 29 (1):146-151. http://www.oalib.com/paper/1581491

    Wang Ge. 2010. Distribution of surface albedo in China during 1982-2000[J]. Plateau Meteorology (in Chinese), 29 (1):146-151. http://www.oalib.com/paper/1581491
    [15] 王鸽, 韩琳, 姬光杰. 2011. 1982~1998年中国不同地区地表反照率变化原因初探[J].重庆师范大学学报(自然科学版), 28 (4):79-83. http://d.old.wanfangdata.com.cn/Periodical/cqsfxyxb201104018

    Wang Ge, Han Lin, Ji Guangjie. 2011. Research of the reason for variations of surface albedo in different areas in China from 1982 to 1998[J]. Journal of Chongqing Normal University (Natural Science Edition) (in Chinese), 28 (4):79-83, doi: 50-1165/N.20110708.1116.002.
    [16] Wang K C, Liu J M, Zhou X J, et al. 2004. Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan Plateau[J]. J. Geophys. Res., 109 (D5):D05107, doi: 10.1029/2003JD004229.
    [17] 王艺, 朱彬, 刘煜, 等. 2011.中国地区近10年地表反照率变化趋势[J].气象科技, 39 (2):147-155. doi: 10.3969/j.issn.1671-6345.2011.02.004

    Wang Yi, Zhu Bin, Liu Yu, et al. 2011. Trend of surface albedo changes in China in last decade[J]. Meteorological Science and Technology (in Chinese), 39 (2):147-155, doi: 10.3969/j.issn.1671-6345.2011.02.004.
    [18] Wang Z S, Schaaf C B, Chopping M J, et al. 2012. Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra[J]. Remote Sensing of Environment, 117:264-280, doi: 10.1016/j.rse.2011.10.002.
    [19] Wang Z S, Schaaf C B, Strahler A H, et al. 2014. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods[J]. Remote Sensing of Environment, 140:60-77, doi: 10.1016/j.rse.2013.08.025.
    [20] 王正兴, 刘闯, Huete A. 2003.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J].生态学报, 23 (5):979-987. doi: 10.3321/j.issn:1000-0933.2003.05.020

    Wang Zhengxing, Liu Chuang, Huete A. 2003. From AVHRR-NDVI to MODIS-EVI:Advances in vegetation index research[J]. Acta Ecologica Sinica (in Chinese), 23 (5):979-987, doi: 10.3321/j.issn:1000-0933.2003.05.020.
    [21] 魏凤英. 1999.现代气候统计诊断与预测技术[M].北京:气象出版社, 43-47.

    Wei Fengying. 1999. Modern Statistics and Prediction Technique on Climate (in Chinese)[M]. Beijing:China Meteorological Press, 43-47.
    [22] 肖登攀, 陶福禄, Moiwo Juana P. 2011.全球变化下地表反照率研究进展[J].地球科学进展, 26 (11):1217-1224. doi: 10.11867/j.issn.1001-8166.2011.11.1217

    Xiao Dengpan, Tao Fulu, Moiwo Juana P. 2011. Research progress on surface albedo under global change[J]. Advances in Earth Science (in Chinese), 26 (11):1217-1224, doi: 10.11867/j.issn.1001-8166.2011.11.1217.
    [23] 叶笃正, 高由禧. 1979.青藏高原气象学[M].北京:科学出版社, 7-9.

    Ye Duzheng, Gao Youxi. 1979. Meteorology of the Tibetan Plateau (in Chinese)[M]. Beijing:Science Press, 7-9.
    [24] 张强, 胡向军, 王胜, 等. 2009.黄土高原陆面过程试验研究(LOPEX)有关科学问题[J].地球科学进展, 24 (4):363-372. doi: 10.11867/j.issn.1001-8166.2009.04.0363

    Zhang Qiang, Hu Xiangjun, Wang Sheng, et al. 2009. Some technological and scientific issues about the experimental study of land surface processes in Chinese Loess Plateau (LOPEX)[J]. Advances in Earth Science (in Chinese), 24 (4):363-372, doi: 10.11867/j.issn.1001-8166.2009.04.0363.
    [25] Zhang T, Scambos T, Haran T, et al. 2003. Ground-based and satellite-derived measurements of surface albedo on the north slope of Alaska[J]. Journal of Hydrometeorology, 4 (1):77-91, doi:10.1175/1525-7541 (2003)004<0077:GBASDM>2.0.CO;2.
    [26] 赵勇, 李如琦, 杨霞, 等. 2013. 5月青藏高原地区感热异常对北疆夏季降水的影响[J].高原气象, 32 (5):1215-1223. doi: 10.7522/j.issn.1000-0534.2012.00117

    Zhao Yong, Li Ruqi, Yang Xia, et al. 2013. Impact of the anomaly of surface sensible heat in Qinghai-Xizang Plateau and its surrounding areas on summertime precipitation in northern Xinjiang[J]. Plateau Meteorology (in Chinese), 32 (5):1215-1223, doi: 10.7522/j.issn.1000-0534.2012.00117.
    [27] 郑度. 1996.青藏高原自然地域系统研究[J].中国科学(D辑:地球科学), 26 (4):336-341. doi: 10.1360/yd1996-39-4-410

    Zheng Du. 1996. The system of physico-geographical regions of the Qinghai-Xizang (Tibet) Plateau[J]. Science in China (Ser. D:Earth Sciences), 39 (4):410-417, doi: 10.1360/yd1996-39-4-410.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1449
  • HTML全文浏览量:  76
  • PDF下载量:  1263
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-25
  • 网络出版日期:  2017-12-27
  • 刊出日期:  2018-05-20

目录

    /

    返回文章
    返回