高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人为扰动对陆面水分能量的影响——以沩水河流域为例

刘双 谢正辉 曾毓金 刘斌 高骏强 李锐超

刘双, 谢正辉, 曾毓金, 刘斌, 高骏强, 李锐超. 人为扰动对陆面水分能量的影响——以沩水河流域为例[J]. 气候与环境研究, 2018, 23(6): 683-701. doi: 10.3878/j.issn.1006-9585.2018.17107
引用本文: 刘双, 谢正辉, 曾毓金, 刘斌, 高骏强, 李锐超. 人为扰动对陆面水分能量的影响——以沩水河流域为例[J]. 气候与环境研究, 2018, 23(6): 683-701. doi: 10.3878/j.issn.1006-9585.2018.17107
Shuang LIU, Zhenghui XIE, Yujin ZENG, Bin LIU, Junqiang GAO, Ruichao LI. Impacts of Human Activities on Land Surface Water and Energy—A Case Study in Weishui River Watershed[J]. Climatic and Environmental Research, 2018, 23(6): 683-701. doi: 10.3878/j.issn.1006-9585.2018.17107
Citation: Shuang LIU, Zhenghui XIE, Yujin ZENG, Bin LIU, Junqiang GAO, Ruichao LI. Impacts of Human Activities on Land Surface Water and Energy—A Case Study in Weishui River Watershed[J]. Climatic and Environmental Research, 2018, 23(6): 683-701. doi: 10.3878/j.issn.1006-9585.2018.17107

人为扰动对陆面水分能量的影响——以沩水河流域为例

doi: 10.3878/j.issn.1006-9585.2018.17107
基金项目: 

国家自然科学基金面上项目 41575096

中国科学院前沿科学重点研究项目 QYZDY-SSW-DQC012

详细信息
    作者简介:

    刘双, 男, 1989年出生, 博士, 主要从事陆地生态水文模型研究。E-mail:liushuang@mail.iap.ac.cn, liushuang@mail.iap.ac.cn

    通讯作者:

    谢正辉, E-mail:zxie@lasg.iap.ac.cn

  • 中图分类号: P461

Impacts of Human Activities on Land Surface Water and Energy—A Case Study in Weishui River Watershed

Funds: 

National Natural Science Foundation of China 41575096

Key Research Program of Frontier Sciences, Chinese Academy of Sciences QYZDY-SSW-DQC012

  • 摘要: 以沩水河流域为例,基于陆面模式CLM4.5,建立了综合考虑作物种植、地下水开采及灌溉等人类活动的流域陆面水文模型。利用所发展模型,针对1981~2012年,取500 m空间分辨率,探讨人为扰动对陆面过程的影响。研究表明:1)地下水侧向流使得中下游地区地下水位有所提高,平原地下水埋深分布在4 m左右,山区埋深可达到几十米;模拟的叶面积指数较静态MODIS叶面积指数偏大1左右,由此使得种植区月蒸腾量提高约10 mm,土壤蒸发和地表产流有所减少;在灌溉作用下,作物叶面积指数略增长,蒸散发稍有提高,而在假设水稻采用漫灌的情况下,水库灌溉补偿了作物生长产生的水消耗,提高了该区域土壤湿度,增加潜热通量;研究区地下水开采存在但其水文效应并不显著。2)土地覆盖变化自1990年有较大变动,1990~2000年以林地为主,2000年后以耕地为主,其中,1990~2000年土地覆盖类型变化不明显,2001~2012年耕地面积呈先减少再增加又减少的趋势,林地面积则先增加再减少又增加,耕地与林地在2012年所占比例基本持平;同一土地类型内,植被类型变化较为明显,导致陆面水文模拟结果差异较大。
  • 图  1  沩水河流域位置

    Figure  1.  Geographic location of the Weishui River watershed

    图  2  (a)观测(Obs)、未考虑侧向流模拟(CTL)及考虑侧向流模拟(LTF)的地表温度;(b)未考虑侧向流模拟(CTL)及(c)考虑侧向流模拟(LTF)的地下水埋深与观测对比散点图;(d)提取自Fan et al. (2007)估算的全球地下水埋深;(e)未考虑侧向流模拟(CTL)的地下水埋深;(f)考虑侧向流模拟(LTF)的地下水埋深

    Figure  2.  (a) Comparison of daily ground temperature from observations and simulations of CTL (without groundwater lateral flow) and LTF (with groundwater lateral flow); scatter diagrams of groundwater table depth from observations and simulations of (b) CTL and (c) LTF; simulations of groundwater table depth spatial pattern from (d) data extracted from global water table depth from Fan et al. (2007), (e) simulation of CTL, and (f) simulation of LTF

    图  3  地下水侧向流对陆面水文模拟的作用(气候态LTF减CTL):(a)地下水埋深;(b)地表温度;(c)土壤温度;(d)10 cm深土壤湿度;(e)100 cm深土壤湿度;(f)地表产流;(g)潜热通量;(h)感热通量

    Figure  3.  Climatological impacts of groundwater lateral flow on hydrological variables (LTF-CTL): (a) Water table depth; (b) ground temperature; (c) soil temperature; (d) soil moisture at 10-cm depth; (e) soil moisture at 100-cm depth; (f) surface runoff; (g) latent heat flux; (h) sensible heat flux

    图  4  作物生长的陆面水文气候态效应(LTCE减LTF):(a)土壤蒸发;(b)冠层蒸发;(c)植被蒸腾;(d)感热通量;(e)多层平均土壤湿度;(f)地表产流;(g)叶面积指数;(h)平均根系比例

    Figure  4.  Climatological impacts of crop growth on hydrological variables (LTCE-LTF): (a) Soil evaporation; (b) canopy evaporation; (c) canopy transpiration; (d) sensible heat flux; (e) multi-layer averaged soil moisture; (f) surface runoff; (g) leaf area index; (h) mean fraction of roots

    图  5  农村地下水取用的陆面水文气候态效应(LTGW减LTF):(a)地下水埋深;(b)地表温度;(c)土壤温度;(d)10 cm深土壤湿度;(e)100 cm深土壤湿度;(f)地表产流;(g)潜热通量;(h)感热通量

    Figure  5.  Climatological impacts of groundwater lateral flow on hydrological variables (LTGW-LTF): (a) Water table depth; (b) ground temperature; (c) soil temperature; (d) soil moisture at 10-cm depth; (e) soil moisture at 100-cm depth; (f) surface runoff; (g) latent heat flux; (h) sensible heat flux

    图  6  水库灌溉对径流的影响:(a)黄材水库以下2 km处河道断面流量;(b)沩水河流域出口断面流量

    Figure  6.  Impacts of reservoir for irrigation on: (a) Discharge at a site slightly lower than the reservoir; (b) discharge at a site near the outlet of the watershed

    图  7  水库灌溉的陆面水文气候态效应(LTCESG减LTCE):(a)土壤蒸发;(b)冠层蒸发;(c)植被蒸腾;(d)感热通量;(e)10 cm深土壤湿度;(f)100 cm深土壤湿度;(g)地表产流;(h)叶面积指数

    Figure  7.  Climatological impacts of irrigation on hydrological variables (LTCESG-LTCE): (a) Soil evaporation; (b) canopy evaporation; (c) canopy transpiration; (d) sensible heat flux; (e) soil moisture at 10-cm depth; (f) soil moisture at 100-cm depth; (g) surface runoff; (h) leaf area index

    图  8  多种人类活动共同作用下陆面水文气候态效应(LTCESG减LTF):(a)土壤蒸发;(b)冠层蒸发;(c)植被蒸腾;(d)土壤湿度;(e)地表产流;(f)叶面积指数;(g)潜热通量;(h)感热通量

    Figure  8.  Climatological combined effects of multiple human activities on hydrological variables (LTCESG-LTF): (a) Soil evaporation; (b) canopy evaporation; (c) canopy transpiration; (d) soil moisture; (e) surface runoff; (f) leaf area index; (g) latent heat flux; (h) sensible heat flux

    图  9  沩水河流域水分能量要素年际变化:(a)降水量;(b)直接太阳辐射;(c)10 cm深土壤湿度;(d)潜热通量;(e)100 cm深土壤湿度;(f)感热通量

    Figure  9.  Inter-annual variations of (a) precipitation, (b) solar radiation, (c) soil moisture at 10-cm depth, (d) latent heat flux, (e) soil moisture at 100-cm depth, and (f) sensible heat flux

    图  10  沩水河流域水分能量要素季节变化:(a)降水量;(b)直接太阳辐射;(c)10 cm深土壤湿度;(d)潜热通量;(e)100 cm深土壤湿度;(f)感热通量

    Figure  10.  Seasonal variations of (a) precipitation, (b) solar radiation, (c) soil moisture at 10-cm depth, (d) latent heat flux, (e) soil moisture at 100-cm depth, and (f) sensible heat flux

    图  11  基于1:10万土地利用数据的(a)1990年、(b)1995年及(c)2000年沩水河流域土地类型分布;(d)基于1:10万土地利用数据的1990年、1995年及2000年沩水河流域各土地类型所占比例

    Figure  11.  Land use types in the Weishui River watershed in (a) 1990, (b) 1995, and (c) 2000 based on 1:100000 datasets; (d) proportions of water, woodland, grassland, cropland, and build-up in the Weishui River watershed in 1990, 1995, and 2000 based on 1:100000 datasets

    图  12  基于500 m分辨率MODIS产品的(a-l)2001~2012年沩水河流域土地类型分布及(m)2001~2012年沩水河流域各土地类型所占比例

    Figure  12.  (a-l) Land use types in the Weishui River watershed from 2001 to 2012 and (m) proportions of water, woodland, grassland, cropland, and build-up in the Weishui River watershed from 2001 to 2012 based on 500-m resolution MODIS products

    图  13  (a)2009年相比2006年发生土地类型转变的网格(绿色代表发生土地覆盖类型转变的网格);(b)2012年相比2009年发生土地类型转变的网格(绿色代表发生土地覆盖类型转变的网格);(c)2006年、2009年及2012年各植被功能类型所占比例

    Figure  13.  Spatial distributions of land cover change (a) between 2006 and 2009 and (b) between 2009 and 2012 (grid cells with green color denote the places where the land cover changed) and (c) proportions of vegetation types in 2006, 2009, and 2012 based on MODIS products with 500-m resolution

    图  14  2006~2009年土地覆盖变化的陆面水文效应:(a)叶面积指数;(b)多层平均土壤湿度;(c)河道水储量;(d)净辐射;(e)潜热通量;(f)感热通量

    Figure  14.  Climatological impacts of land cover change during 2006-2009 on hydrological variables: (a) Leaf area index; (b) multi-layer averaged soil moisture; (c) river water storage; (d) net radiation; (e) latent heat flux; (f) sensible heat flux

    图  15  图 14,但为2009~2012年

    Figure  15.  Same as Fig. 14, but during 2009-2012

  • [1] Chen F, Xie Z H. 2012. Effects of crop growth and development on regional climate:A case study over East Asian monsoon area[J]. Climate Dyn., 38 (11-12):2291-2305, doi: 10.1007/s00382-011-1125-y.
    [2] 陈亚宁, 徐宗学. 2004.全球气候变化对新疆塔里木河流域水资源的可能性影响[J].中国科学(D辑:地球科学), 34 (11):1047-1053. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200411007
    [3] Chen Yaning, Xu Zongxue. 2005. Plausible impact of global climate change on water resources in the Tarim River Basin[J]. Science in China (Ser. D:Earth Sciences), 48 (1):65-73, doi: 10.1360/04yd0539.
    [4] Chen Y Y, Yang K, He J, et al. 2011. Improving land surface temperature modeling for dry land of China[J]. J. Geophys. Res., 116 (D20):D20104, doi: 10.1029/2011JD015921.
    [5] De Graaf I E M, van Beek L P H, Wada Y, et al. 2014. Dynamic attribution of global water demand to surface water and groundwater resources:Effects of abstractions and return flows on river discharges[J]. Advances in Water Resources, 64:21-33, doi: 10.1016/j.advwatres.2013.12.002.
    [6] Döll P, Siebert S. 2002. Global modeling of irrigation water requirements[J]. Water Resour. Res., 38 (4):1037, doi: 10.1029/2001WR000355.
    [7] Döll P, Hoffmann-Dobrev H, Portmann F T, et al. 2012. Impact of water withdrawals from groundwater and surface water on continental water storage variations[J]. Journal of Geodynamics, 59-60:143-156, doi:10. 1016/j.jog.2011.05.001.
    [8] Fan Y, Li H, Miguez-Macho G. 2013. Global patterns of groundwater table depth[J]. Science, 339 (6122):940-943, doi: 10.1126/science.1229881.
    [9] Fan Y, Miguez-Macho G, Weaver C P, et al. 2007. Incorporating water table dynamics in climate modeling:1. Water table observations and equilibrium water table simulations[J]. J. Geophys. Res., 112(D10):D10125, doi: 10.1029/2006JD008111.
    [10] Friedl M A, Sulla-Menashe D, Tan B, et al. 2010. MODIS Collection 5 global land cover:Algorithm refinements and characterization of new datasets[J]. Remote Sensing of Environment, 114 (1):168-182, doi: 10.1016/j.rse.2009.08.016.
    [11] 胡和平, 汤秋鸿, 雷志栋, 等. 2004.干旱区平原绿洲散耗型水文模型——Ⅰ模型结构[J].水科学进展, 15 (2):140-145. doi: 10.3321/j.issn:1001-6791.2004.02.002

    Hu Heping, Tang Qiuhong, Lei Zhidong, et al. 2004. Runoff-evaporation hydrological model for arid plain oasis, I, the model structure[J]. Advances in Water Science (in Chinese), 15 (2):140-145, doi: 10.3321/j.issn:1001-6791.2004.02.002.
    [12] Jia B H, Xie Z H, Zeng Y J, et al. 2015. Diurnal and seasonal variations of CO2 fluxes and their climate controlling factors for a subtropical forest in Ningxiang[J]. Advances in Atmospheric Sciences, 32 (4):553-564, doi: 10.1007/s00376-014-4069-4.
    [13] 焦胜, 杨娜, 彭楷, 等. 2014.沩水流域土地景观格局对河流水质的影响[J].地理研究, 33 (12):2263-2274. doi: 10.11821/dlyj201412005

    Jiao Sheng, Yang Na, Peng Kai, et al. 2014. The effects of land-use and landscape pattern on water quality in Weihe River watershed[J]. Geographical Research (in Chinese), 33 (12):2263-2274, doi: 10.11821/dlyj201412005.
    [14] Lehner B, Verdin K, Jarvis A. 2008. New global hydrography derived from spaceborne elevation data[J]. Eos, Trans. Amer. Geophys. Union, 89 (10):93-94, doi: 10.1029/2008EO100001.
    [15] Leng G Y, Huang M Y, Tang Q H, et al. 2014. Modeling the effects of groundwater-fed irrigation on terrestrial hydrology over the conterminous United States[J]. Journal of Hydrometeorology, 15 (3):957-972, doi: 10.1175/JHM-D-13-049.1.
    [16] 李德新. 1999.略论宁乡县黄材灌区续建配套的必要性[J].湖南水利, (1):28-29. doi: 10.16052/j.cnki.hnslsd.1999.01.010

    Li Dexin. 1999. Discuss on the necessity of continued construction for Huangcai irrigated area in Ningxiang County[J]. Hunan Hydraulic Engineering (in Chinese), (1):28-29, doi: 10.16052/j.cnki.hnslsd.1999.01.010.
    [17] Liu J Y, Liu M L, Zhuang D F, et al. 2003. Study on spatial pattern of land-use change in China during 1995-2000[J]. Science in China (Ser. D:Earth Sciences), 46 (4):373-384, doi: 10.1360/03yd9033.
    [18] Maxwell R M, CondonL E, KolletS J. 2015. A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3[J]. Geoscientific Model Development, 8 (3):923-937, doi: 10.5194/gmd-8-923-2015.
    [19] Myneni R, Knyazikhin Y, Park T. 2015. MOD15A2H MODIS/terra leaf area index/FPAR 8-day L4 global 500m SIN grid V006[DB]. NASA EOSDIS Land Processes DAAC, doi: 10.5067/MODIS/MOD15A2H.006.
    [20] Oleson K W, Lawrence D M, Bonan G B, et al. 2013. Technical description of version 4.5 of the Community Land Model (CLM)[R]. NCAR Technical Note: NCAR/TN-503+STR.
    [21] Pelletier J D, Broxton P D, Hazenberg P, et al. 2016. A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling[J]. Journal of Advances in Modeling Earth Systems, 8 (1):41-65, doi: 10.1002/2015MS000526.
    [22] Pokhrel Y N, Hanasaki N, Wada Y, et al. 2016. Recent progresses in incorporating human land-water management into global land surface models toward their integration into earth system models[J]. Wiley Interdisciplinary Reviews:Water, 3 (4):548-574, doi: 10.1002/wat2.1150.
    [23] Shangguan W, Dai Y J, Liu B Y, et al. 2013. A China data set of soil properties for land surface modeling[J]. Journal of Advances in Modeling Earth Systems, 5 (2):212-224, doi: 10.1002/jame.20026.
    [24] Shi C X, Xie Z H, Qian H, et al. 2011. China land soil moisture EnKF data assimilation based on satellite remote sensing data[J]. Science China Earth Sciences, 54 (9):1430-1440, doi: 10.1007/s11430-010-4160-3.
    [25] Sterling S M, Ducharne A, Polcher J. 2013. The impact of global land-cover change on the terrestrial water cycle[J]. Nature Climate Change, 3 (4):385-390, doi: 10.1038/nclimate1690.
    [26] Wada Y, Van Beek LP H, Wanders N, et al. 2013. Human water consumption intensifies hydrological drought worldwide[J]. Environmental Research Letters, 8 (3):034036, doi: 10.1088/1748-9326/8/3/034036.
    [27] Wigmosta M S, Lettenmaier D P. 1999. A comparison of simplified methods for routing topographically driven subsurface flow[J]. Water Resour. Res., 35 (1):255-264, doi: 10.1029/1998WR900017.
    [28] Wood E F, Roundy J K, Troy T J, et al. 2011. Hyperresolution global land surface modeling:Meeting a grand challenge for monitoring Earth's terrestrial water[J]. Water Resour. Res., 47 (5):W01802, doi: 10.1029/2010WR010090.
    [29] 夏军, 叶爱中, 王蕊, 等. 2011.跨流域调水的大尺度分布式水文模型研究与应用[J].南水北调与水利科技, 9 (1):1-7, 95. doi: 10.3724/SP.J.1201.2011.01001

    Xia Jun, Ye Aizhong, Wang Rui, et al. 2011. Large scale distributed hydrological model of inter-basin water transfer and its application[J]. South-to-North Water Diversion and Water Science and Technology (in Chinese), 9 (1):1-7, 95, doi: 10.3724/SP.J.1201.2011.01001.
    [30] Xie Z H, Wang L Y, Jia B H, et al. 2016. Measuring and modeling the impact of a severe drought on terrestrial ecosystem CO2 and water fluxes in a subtropical forest[J]. J. Geophys. Res., 121 (10):2576-2587, doi: 10.1002/2016JG003437.
    [31] Zeng Y J, Xie Z H, Yu Y, et al. 2016. Effects of anthropogenic water regulation and groundwater lateral flow on land processes[J]. Journal of Advances in Modeling Earth Systems, 8 (3):1106-1131, doi: 10.1002/2016MS000646.
    [32] Zeng Y J, Xie Z H, Liu S. 2017. Seasonal effects of irrigation on land-atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin[J]. Earth System Dynamics, 8 (1):113-127, doi: 10.5194/esd-8-113-2017.
    [33] 张学兵. 2016.关于宁乡县水资源管理工作的几点思考[J].湖南水利水电, (1):19-21. doi: 10.3969/j.issn.1009-4229(s).2016.01.008

    Zhang Xuebing. 2016. Some considerations in water resource management in Ningxiang County[J]. Hunan Hydraulics and Power, (1):19-21, doi: 10.3969/j.issn.1009-4229(s).2016.01.008.
    [34] Zou J, Xie Z H, Yu Y, et al. 2014. Climatic responses to anthropogenic groundwater exploitation:A case study of the Haihe River Basin, Northern China[J]. Climate Dyn., 42 (7-8):2125-2145, doi: 10.1007/s00382-013-1995-2.
    [35] Zou J, Xie Z H, Zhan C S, et al. 2015. Effects of anthropogenic groundwater exploitation on land surface processes:A case study of the Haihe River Basin, Northern China[J]. J. Hydrol., 524:625-641, doi:10.1016/j.jhydrol. 2015.03.026.
  • 加载中
图(15)
计量
  • 文章访问数:  2799
  • HTML全文浏览量:  38
  • PDF下载量:  728
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-19
  • 网络出版日期:  2018-08-09
  • 刊出日期:  2018-11-20

目录

    /

    返回文章
    返回