A Method for Prediction of Daily Maximum Electric Loads in the Summer in Beijing Based on the BP Neural Network
-
摘要: 利用2006~2017年北京夏季(6~8月)逐日最大电力负荷和同期气象资料,分析最大电力负荷与各种气象因子的相关性,基于BP(Back Propagation)神经网络算法,建立了两种夏季日最大电力负荷预测模型并对比。结果表明:北京夏季周末基础负荷远小于工作日,剔除时应加以区分;气象因子对气象负荷的影响具有累积效应,累积2 d时两者的相关性最强;结合实际,根据自变量的不同分别建立了两种日最大电力负荷预测模型;经实际预测检验,两种预测模型均取得了较好的预测效果,能够满足电力部门的实际需求,其中自变量中加入前一日气象负荷的模型效果更优。Abstract: Based on daily maximum electric loads and meteorological data in the summer (June-August) from 2006 to 2017 in Beijing, the relationship between electric load and meteorological factors is diagnosed. Using the BP (Back Propagation) neural network algorithm, two maximum electric power load prediction models are established and evaluated. The results indicate that (1) the basic electric load on weekends in Beijing in the summer is much less than that in working days, which should be distinguished when being removed; (2) the influence of meteorological factors on meteorological load has cumulative effect, and the correlation between them is the highest for two days of accumulation; (3) taking the actual situation into account, two different daily maximum electric load forecasting models are established based on different independent variables. Comparing the prediction results with actual data, both of the forecasting models show good prediction performance that can meet the actual demand of the power sector. The forecasting model with meteorological load of the previous day as an independent variable shows better prediction effect.
-
表 1 2006~2016年北京市夏季最大电力负荷与各气象因子的相关系数
Table 1. Correlation coefficients between daily maximum electric loads and meteorological factors in the summer in Beijing from 2006 to 2016
r0 r 最高气温 0.362** 0.556** 最低气温 0.485** 0.707** 平均气温 0.499** 0.741** 相对湿度 0.041 0.057 降水量 -0.009 -0.065 日照时间 0.064 0.032 风速 -0.057* -0.084* 闷热指数 0.554** 0.822** 注:r0、r分别为剔除基础负荷前与剔除后最大电力负荷与气象因子的相关系数;**表示通过置信度为99%的显著性检验,*表示通过95%检验。 表 2 夏季最大电力负荷预测模型方案1的误差统计
Table 2. Error statistics in scheme 1 model of daily maximum electric loads in the summer
相对误差 < 2%比例 相对误差 < 5%比例 平均相对误差 最大相对误差 与实际值相关系数 均方根误差 模型对2006~ 2015年的模拟值 50.5% 90.4% 2.3% 11.0% 0.99** 370.6 模型对2016年的模拟值 42.4% 71.7% 3.6% 13.7% 0.96** 705.2 **表示通过置信度为99%的显著性检验。 表 3 夏季最大电力负荷预测模型方案2和方案3的误差对比
Table 3. Comparison of errors between scheme 2 and scheme 3 models of daily maximum electric loads in the summer
相对误差<2%比例 相对误差<5%比例 平均相对误差 最大相对误差 与实际值相关系数 均方根误差 模型对2006~2015年的模拟值 方案2 28.2% 61.9% 3.6% 23.3% 0.97** 564 方案3 33.8% 72.6% 3.7% 17.5% 0.96** 552 模型对2016年的模拟值 方案2 24.9% 54.2% 6.9% 34.5% 0.89** 1311 方案3 31.6% 63.7% 5.8% 21.1% 0.91** 1034 **表示通过置信度为99%的显著性检验。 表 4 2017年夏季最大电力负荷预测模型方案1和方案3的预测误差对比
Table 4. Comparison of errors between scheme 1 and scheme 3 models of daily maximum electric loads in the summer of 2017
平均相对误差 最大相对误差 均方根误差 方案1 气象因子为预报值 3.4% 11.0% 829 气象因子为实际值 2.5% 9.6% 674 方案3 气象因子为预报值 5.6% 15.6% 1253 气象因子为实际值 4.5% 12.1% 1164 -
[1] 胡江林, 陈正洪, 洪斌, 等. 2002a.华中电网日负荷与气象因子的关系[J].气象, 28 (3):14-18, 37. doi: 10.3969/j.issn.1000-0526.2002.03.003Hu Jianglin, Chen Zhenghong, Hong Bin, et al. 2002. A relationship between daily electric loads and meteorological elements in central China[J]. Meteorological Monthly (in Chinese), 28 (3):14-18, 37, doi: 10.3969/j.issn.1000-0526.2002.03.003. [2] 胡江林, 陈正洪, 洪斌, 等. 2002b.基于气象因子的华中电网负荷预测方法研究[J].应用气象学报, 13 (5):600-608. doi: 10.3969/j.issn.1001-7313.2002.05.009Hu Jianglin, Chen Zhenghong, Hong Bin, et al. 2002. Forecast technique of electric network loads in central China based on meteorological elements[J]. Journal of Applied Meteorological Science (in Chinese), 13 (5):600-608, doi:10. 3969/j.issn.1001-7313.2002.05.009. [3] 罗慧, 巢清尘, 李奇, 等. 2005.气象要素在电力负荷预测中的应用[J].气象, 31 (6):15-18. doi: 10.3969/j.issn.1000-0526.2005.06.003Luo Hui, Chao Qingchen, Li Qi, et al. 2005. Application of meteorological factors to load forecasting based on ANN[J]. Meteorological Monthly (in Chinese), 31 (6):15-18, doi: 10.3969/j.issn.1000-0526.2005.06.003. [4] 陶琳, 岳小冰. 2016.一种新的粒子群算法优化支持向量机的短期负荷预测[J].电子设计工程, 24 (16):151-154. doi: 10.3969/j.issn.1674-6236.2016.16.047Tao Lin, Yue Xiaobing. 2016. A new power load chaotic predicting based on support vector machine and particle swarm optimization algorithm[J]. Electronic Design Engineering (in Chinese), 24 (16):151-154, doi: 10.3969/j.issn.1674-6236.2016.16.047. [5] 吴兑, 邓雪娇. 2001.环境气象学与特种气象预报[M].北京:气象出版社, 170-171.Wu Dui, Deng Xuejiao. 2001. Environmental Meteorology and Special Meteorological Forecast (in Chinese)[M]. Beijing:China Meteorological Press, 170-171. [6] 徐沐阳, 何钢建, 胡元, 等. 2015.基于气象因素的SVR方法在温州电网负荷预测中的应用[J].中国科技信息, (3):62-64. doi: 10.3969/j.issn.1001-8972.2015.03.024Xu Muyang, He Gangjian, Hu Yuan, et al. 2015. Application of SVR method based on meteorological factors in load forecasting of Wenzhou power grid[J]. China Science and Technology Information (in Chinese), (3):62-64, doi: 10.3969/j.issn.1001-8972.2015.03.024. [7] 叶殿秀, 张培群, 赵珊珊, 等. 2013.北京夏季日最大电力负荷预报模型建立方法探讨[J].气候与环境研究, 18 (6):804-810. doi: 10.3878/j.issn.1006-9585.2013.12146Ye Dianxiu, Zhang Peiqun, Zhao Shanshan, et al. 2013. Research on meteorological forecast technique of daily maximum electric loads during summer in Beijing[J]. Climatic and Environmental Research (in Chinese), 18 (6):804-810, doi: 10.3878/j.issn.1006-9585.2013.12146. [8] 尤焕苓, 丁德平, 王春华, 等. 2008.应用回归分析和BP神经网络方法模拟北京地区电力负荷[J].气象科技, 36 (6):801-805. doi: 10.3969/j.issn.1671-6345.2008.06.026You Huanling, Ding Deping, Wang Chunhua, et al. 2008. Application of regression analysis and artificial neural network to Beijing daily power peak load forecast[J]. Meteorological Science and Technology (in Chinese), 36 (6):801-805, doi: 10.3969/j.issn.1671-6345.2008.06.026. [9] 张自银, 马京津, 雷杨娜. 2011.北京市夏季电力负荷逐日变率与气象因子关系[J].应用气象学报, 22 (6):760-765. doi: 10.3969/j.issn.1001-7313.2011.06.015Zhang Ziyin, Ma Jingjin, Lei Yangna. 2011. Beijing electric power load and its relation with meteorological factors in summer[J]. Journal of Applied Meteorological Science (in Chinese), 22 (6):760-765, doi:10.3969/j.issn.1001-7313. 2011.06.015. [10] 郑贤, 唐伍斌, 贝宇, 等. 2008.桂林电网日负荷与气象因素的关系及其预测[J].气象, 34 (10):96-101. doi: 10.7519/j.issn.1000-0526.2008.10.013Zheng Xian, Tang Wubin, Bei Yu, et al. 2008. A relationship between daily load and meteorological factors for Guilin power network and forecasting[J]. Meteorological Monthly (in Chinese), 34 (10):96-101, doi: 10.7519/j.issn.1000-0526.2008.10.013. -