Simulation Analysis of Soil Moisture in the Tibetan Plateau Based on the HRCLDAS/CLM Land Data Assimilation System
-
摘要: 利用最新的高时空分辨率(1 km、1 h)的中国气象局高分辨率陆面数据同化系统(HRCLDAS-V1.0)大气近地面强迫资料,驱动由NCAR发展的通用陆面模式(CLM),对青藏高原地区2015年1月1日至9月30日的土壤湿度开展了模拟研究。结果表明模拟得到的高时空分辨率(1 km、1 h)土壤湿度能够体现出青藏高原地区从东南向西北逐渐变低的空间分布特征,较好地表现出各层土壤湿度的时间变化特征,6~9月土壤湿度波动较大,1~5月波动较平缓,上层土壤湿度变幅较大,深层变化较平缓。0~5 cm、0~10 cm和10~40 cm深度土壤湿度模拟结果与观测值的相关系数均在0.8以上,其中0~5 cm土层的相关系数达到0.92,各层土壤湿度观测值与模拟值的均方根误差变化则相反,3个土层土壤湿度模拟结果与观测值的偏差均小于0.04 mm3 mm-3,但模式对于研究时段土壤湿度变化的低值有高估现象,且模拟能力随着土层深度的加深而减弱。
-
关键词:
- 青藏高原 /
- HRCLDAS/CLM系统 /
- 陆面模式 /
- 土壤湿度
Abstract: China Meteorological Administration High Resolution Land Data Assimilation System (HRCLDAS-V1.0) is used to drive the Community Land Model (CLM) for soil moisture simulation from 1 Jan to 30 Sep 2015 over the Tibetan Plateau region. Results show that the simulated soil moisture with high spatial-temporal resolution (1 km, 1 h) can reflect the spatial distribution characteristics of soil moisture in the Tibetan Plateau, where the soil moisture gradually decreases from the southeast to the northwest. Temporal variability of the soil moisture shows large changes from Jun to Sep, while the changes from Jan to May are more gentle at different depths of soil. Large changes are found in the upper soil layers, while changes are often small in deep soil layers. The correlation coefficient between the observations and simulated soil moisture is above 0.8 of 0-5-cm, 0-10-cm, and 10-40-cm depths, and reaches 0.92 for the layer of 0-5-cm depth. The changes of the root mean square errors for simulated and observed soil moisture are opposite, and the biases of simulated soil moisture are less than 0.04 mm3 mm-3 in all layers. During the study period, the low value of soil moisture is overestimated, and the simulation ability of the model for soil moisture decreases with the depth of the soil.-
Key words:
- Tibetan Plateau /
- HRCLDAS/CLM System /
- Land surface model /
- Soil moisture
-
表 1 2015年1~9月青藏高原土壤湿度观测值与模拟值的整体相关系数、均方根误差及偏差
Table 1. Correlation coefficients, root-mean-square arrors, and biases between observed and simulated soil moisture from Jan to Sep 2015 in the Tibetan Plateau
土层深度 相关系数 均方根误差/mm3 mm−3 偏差/mm3 mm−3 0~5 cm 0.92** 0.033 0.016 0~10 cm 0.88** 0.036 0.014 10~40 cm 0.83** 0.044 0.039 **为0.01显著性水平。 -
[1] 陈渤黎, 吕世华, 罗斯琼. 2012. CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究[J].高原气象, 31 (6):1511-1522. http://www.irgrid.ac.cn/handle/1471x/631247Chen Boli, Lü Shihua, Luo Siqiong. 2012. Simulation analysis on land surface process at Maqu Station in the Qinghai-Xizang Plateau using community land model[J]. Plateau Meteorology (in Chinese), 31 (6):1511-1522. http://www.irgrid.ac.cn/handle/1471x/631247 [2] 陈晓磊, 杨梅学, 万国宁, 等. 2013. CLM3和SHAW模式在青藏高原中部NMQ站的模拟研究[J].冰川冻土, 35 (2):291-300. doi: 10.7522/j.issn.1000-0240.2013.0035Chen Xiaolei, Yang Meixue, Wan Guoning, et al. 2013. Simulation studies of CLM3 and SHAW at NMQ Station on the central Tibetan Plateau[J]. Journal of Glaciology and Geocryology (in Chinese), 35 (2):291-300, doi: 10.7522/j.issn.1000-0240.2013.0035. [3] 陈宇航, 范广洲, 赖欣, 等. 2016.青藏高原复杂下垫面能量和水分循环季节变化特征分析[J].气候与环境研究, 21 (5):586-600. doi: 10.3878/j.issn.1006-9585.2016.15068Chen Yuhang, Fan Guangzhou, Lai Xin, et al. 2016. Characteristics of seasonal variations of energy and water cycles over the complex underlying surface of the Tibetan Plateau[J]. Climatic and Environmental Research (in Chinese), 21 (5):586-600, doi: 10.3878/j.issn.1006-9585.2016.15068. [4] Dai Y J, Zeng X B, Dickinson R E, et al. 2003. The common land model[J]. Bull. Amer. Meteor. Soc., 84 (8):1013-1024, doi: 10.1175/BAMS-84-8-1013. [5] Darcy H. 1856. The Public Fountains of the City of Dijon[M]. Paris:Dalmont, 647. [6] De Lannoy G J M, Houser P R, Verhoest N E C, et al. 2009. Adaptive soil moisture profile filtering for horizontal information propagation in the independent column-based CLM2.0[J]. Journal of Hydrometeorology, 10 (3):766-779, doi: 10.1175/2008JHM1037.1. [7] Dorigo W, de Jeu R, Chung D, et al. 2012. Evaluating global trends (1988-2010) in harmonized multi-satellite surface soil moisture[J]. Geophys. Res. Lett., 39 (18):L18405, doi: 10.1029/2012GL052988. [8] Dorigo W A, Gruber A, de Jeu R, et al. 2015. Evaluation of the ESA CCI soil moisture product using ground-based observations[J]. Remote Sensing of Environment, 162:380-395, doi: 10.1016/j.rse.2014.07.023. [9] Fang X W, Luo S Q, Lyu S, et al. 2016. A simulation and validation of CLM during freeze-thaw on the Tibetan Plateau[J]. Advances in Meteorology, 2016:9476098, doi: 10.1155/2016/9476098. [10] 龚伟伟. 2014. CMA陆面数据同化系统(CLDAS)产品评估[D]. 南京信息工程大学硕士学位论文, 1-83. http://cdmd.cnki.com.cn/Article/CDMD-10300-1015566564.htmGong Weiwei. 2014. Evaluation on the products of CMA Land Assimilation System[D]. M. S. thesis (in Chinese), Nanjing University of Information Science and Technology, 1-83. http://cdmd.cnki.com.cn/Article/CDMD-10300-1015566564.htm [11] 郭东林, 杨梅学. 2010. SHAW模式对青藏高原中部季节冻土区土壤温、湿度的模拟[J].高原气象, 29 (6):1369-1377. http://www.oalib.com/paper/4182752Guo Donglin, Yang Meixue. 2010. Simulation of soil temperature and moisture in seasonally frozen ground of central Tibetan Plateau by SHAW model[J]. Plateau Meteorology (in Chinese), 29 (6):1369-1377. http://www.oalib.com/paper/4182752 [12] 郭维栋, 马柱国, 王会军. 2007.土壤湿度——一个跨季度降水预测中的重要因子及其应用探讨[J].气候与环境研究, 12 (1):20-28. doi: 10.3878/j.issn.1006-9585.2007.01.03Guo Weidong, Ma Zhuguo, Wang Huijun. 2007. Soil moisture-An important factor of seasonal precipitation prediction and its application[J]. Climatic and Environmental Research (in Chinese), 12 (1):20-28, doi:10.3878/j. issn.1006-9585.2007.01.03. [13] 韩帅, 师春香, 林泓锦, 等. 2015. CLDAS土壤湿度业务产品的干旱监测应用[J].冰川冻土, 37 (2):446-453. doi: 10.7522/j.issn.1000-0240.2015.0051Han Shuai, Shi Chunxiang, Lin Hongjin, et al. 2015. The CLDAS soil moisture operation products applied to monitor soil drought[J]. Journal of Glaciology and Geocryology (in Chinese), 37 (2):446-453, doi:10.7522/j.issn.1000-0240. 2015.0051. [14] 韩帅, 师春香, 姜立鹏, 等. 2017. CLDAS土壤湿度模拟结果及评估[J].应用气象学报, 28 (3):369-378. doi: 10.11898/1001-7313.20170310Han Shuai, Shi Chunxiang, Jiang Lipeng, et al. 2017. The simulation and evaluation of soil moisture based on CLDAS[J]. Journal of Applied Meteorological Science (in Chinese), 28 (3):369-378, doi: 10.11898/1001-7313.20170310. [15] Kerr Y H. 2007. Soil moisture from space:Where are we?[J]. Hydrogeology Journal, 15 (1):117-120, doi: 10.1007/s10040-006-0095-3. [16] 赖欣, 文军, 岑思弦, 等. 2014. CLM4.0模式对中国区域土壤湿度的数值模拟及评估研究[J].大气科学, 38 (3):499-512. doi: 10.3878/j.issn.1006-9895.1401.13194 [17] Lai Xin, Wen Jun, Cen Sixian, et al. 2017. Numerical simulation and evaluation study of soil moisture over China by using CLM4.0 model[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (3):499-512, doi:10.3878/j.issn. 1006-9895.1401.13194. [18] 李明星, 马柱国, 牛国跃. 2011.中国区域土壤湿度变化的时空特征模拟研究[J].科学通报, 56 (16):1288-1300. doi: 10.1007/s11434-011-4493-0Li Mingxing, Ma Zhuguo, Niu Guoyue. 2011. Modeling spatial and temporal variations in soil moisture in China[J]. Chinese Science Bulletin, 56 (17):1809-1820, doi: 10.1007/s11434-011-4493-0. [19] 李震坤, 武炳义, 朱伟军, 等. 2011. CLM3.0模式中冻土过程参数化的改进及模拟试验[J].气候与环境研究, 16 (2):137-148. doi: 10.3878/j.issn.1006-9585.2011.02.03Li Zhenkun, Wu BIngyi, Zhu Weijun, et al. 2011. Improvement and validation of the frozen soil parameterization scheme used in NCAR CLM3.0 model[J]. Climatic and Environmental Research (in Chinese), 16 (2):137-148, doi: 10.3878/j.issn.1006-9585.2011.02.03. [20] 刘川, 余晔, 解晋, 等. 2015.多套土壤温湿度资料在青藏高原的适用性[J].高原气象, 34 (3):653-665. doi: 10.7522/j.issn.1000-0534.2015.00034Liu Chuan, Yu Ye, Xie Jin, et al. 2015. Applicability of soil temperature and moisture in several datasets over Qinghai-Xizang Plateau[J]. Plateau Meteorology (in Chinese), 34 (3):653-665, doi: 10.7522/j.issn.1000-0534.2015.00034. [21] 刘振元, 张杰, 陈立. 2017.青藏高原植被指数最新变化特征及其与气候因子的关系[J].气候与环境研究, 22 (3):289-300. doi: 10.3878/j.issn.1006-9585.2017.14247Liu Zhenyuan, Zhang Jie, Chen Li. 2017. The latest change in the Qinghai-Tibetan Plateau vegetation index and its relationship with climate factors[J]. Climatic and Environmental Research (in Chinese), 22 (3):289-300, doi: 10.3878/j.issn.1006-9585.2017.14247. [22] 马思源, 朱克云, 李明星, 等. 2016.中国区域多源土壤湿度数据的比较研究[J].气候与环境研究, 21 (2):121-133. doi: 10.3878/j.issn.1006-9585.2015.15080Ma Siyuan, Zhu Keyun, Li Mingxing, et al. 2016. A comparative study of multi-source soil moisture data for China's regions[J]. Climatic and Environmental Research (in Chinese), 21 (2):121-133, doi: 10.3878/j.issn.1006-9585.2015.15080. [23] 孟现勇, 王浩, 刘志辉, 等. 2017.基于CLDAS强迫CLM3.5模式的新疆区域土壤温度陆面过程模拟及验证[J].生态学报, 37 (3):979-995. doi: 10.5846/stxb201508171717Meng Xianyong, Wang Hao, Liu Zhihui, et al. 2017. Simulation and verification of land surface soil temperatures in the Xinjiang Region by the CLM3.5 model forced by CLDAS[J]. Acta Ecologica Sinica (in Chinese), 37 (3):979-995, doi: 10.5846/stxb201508171717. [24] Moiwo J P, Lu W X, Tao F L. 2012. GRACE, GLDAS and measured groundwater data products show water storage loss in Western Jilin, China[J]. Water Science and Technology, 65 (9):1606-1614, doi:10. 2166/wst.2012.053. [25] Niu G Y, Yang Z L. 2006. Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J]. Journal of Hydrometeorology, 7 (5):937-952, doi: 10.1175/JHM538.1. [26] Oleson K W, Dai Y, Bonan G, et al. 2004. Technical description of the Community Land Model (CLM)[R]. NCAR Technical Note NCAR/TN-461+STR, 1-187, doi: 10.5065/D6N877R0. [27] Oleson K W, Niu G Y, Yang Z L, et al. 2007. CLM3.5 documentation[R]. Boulder:National Center for Atmospheric Research, 34pp. [28] 乔平林, 张继贤, 王翠华. 2007.应用AMSR-E微波遥感数据进行土壤湿度反演[J].中国矿业大学学报, 36 (1):262-265. doi: 10.3321/j.issn:1000-1964.2007.02.025Qiao Pinglin, Zhang Jixian, Wang Cuihua. 2007. Soil moisture retrieving by AMSR-E microwave remote sensing data[J]. Journal of China University of Mining and Technology (in Chinese), 36 (1):262-265, doi: 10.3321/j.issn:1000-1964.2007.02.025. [29] Schmugge T. 1985. Remote sensing of soil moisture[M]//Anderson M G. Encyclopedia of Hydrological Forecasting. Chichester:John Wiley and Sons, 523-568. [30] Seneviratne S I, Corti T, Davin E L, et al. 2010. Investigating soil moisture-climate interactions in a changing climate:A review[J]. Earth-Science Reviews, 99 (3-4):125-161, doi:10.1016/j.earscirev.2010. 02.004. [31] 沈润平, 张悦, 师春香, 等. 2016.长时间序列多源土壤湿度产品在中国地区的比较分析[J].气象科技, 44 (6):867-874. doi: 10.19517/j.1671-6345.2016.06.003Shen Runping, Zhang Yue, Shi Chunxiang, et al. 2016. Inter-comparison of various long-time soil moisture datasets in China[J]. Meteorological Science and Technology (in Chinese), 44 (6):867-874, doi:10.19517/j.1671-6345. 2016.06.003. [32] 师春香, 姜立鹏, 张涛. 2013. CMA陆面数据同化业务系统及产品介绍[C]//第30届中国气象学会年会论文集. 南京: 中国气象年会.Shi Chunxiang, Jiang Lipeng, Zhang Tao. 2013. CMA land data assimilation business system and product introduction[C]//China Meteorological Annual Meeting. [33] 石磊, 杜军, 周刊社, 等. 2016. 1980-2012年青藏高原土壤湿度时空演变特征[J].冰川冻土, 38 (5):1241-1248. doi: 10.7522/j.issn.1000-0240.2016.0145Shi Lei, Du Jun, Zhou Kanshe, et al. 2016. The temporal-spatial variations of soil moisture over the Tibetan Plateau during 1980-2012[J]. Journal of Glaciology and Geocryology (in Chinese), 38 (5):1241-1248, doi: 10.7522/j.issn.1000-0240.2016.0145. [34] Stamnes K, Tsay S C, Wiscombe W, et al. 1988. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media[J]. Appl. Opt., 27 (12):2502-2509, doi: 10.1364/AO.27.002502. [35] Su C H, Ryu D, Young R I, et al. 2013. Inter-comparison of microwave satellite soil moisture retrievals over the Murrumbidgee Basin, southeast Australia[J]. Remote Sensing of Environment, 134:1-11, doi: 10.1016/j.rse.2013.02.016. [36] 孙帅, 师春香, 梁晓, 等. 2017.不同陆面模式对我国地表温度模拟的适用性评估[J].应用气象学报, 28 (6):737-749. doi: 10.11898/1001-7313.20170609Sun Shuai, Shi Chunxiang, Liang Xiao, et al. 2017. Assessment of ground temperature simulation in china by different land surface models based on station observations[J]. Journal of Applied Meteorological Science (in Chinese), 28 (6):737-749. doi: 10.11898/1001-7313.20170609 [37] Walker J, Rowntree P R. 1977. The effect of soil moisture on circulation and rainfall in a tropical model[J]. Quart. J. Roy. Meteor. Soc., 103 (435):29-46, doi: 10.1002/qj.49710343503. [38] 万国宁, 杨梅学, 王学佳, 等. 2012.青藏高原中部BJ站土壤湿度不同时间尺度的变化[J].土壤通报, 43 (2):286-293. doi: 10.19336/j.cnki.trtb.2012.02.006Wan Guoning, Yang Meixue, Wang Xuejia, et al. 2012. Variations in soil moisture at different time scales of BJ site on the Central Tibetan Plateau[J]. Chinese Journal of Soil Science (in Chinese), 43 (2):286-293, doi:10.19336/j.cnki. trtb.2012.02.006. [39] Wang A H, Zeng X B. 2011. Sensitivities of terrestrial water cycle simulations to the variations of precipitation and air temperature in China[J]. J. Geophys. Res., 116 (D2):D02107, doi: 10.1029/2010JD014659. [40] 王磊, 文军, 张堂堂, 等. 2009.卫星被动微波遥感土壤湿度研究进展[J].气象科技, 37 (1):67-73. doi: 10.3969/j.issn.1671-6345.2009.01.013Wang Lei, Wen Jun, Zhang Tangtang, et al. 2009. Advances in soil moisture retrieval using passive microwave remote sensing[J]. Meteorological Science and Technology (in Chinese), 37 (1):67-73, doi: 10.3969/j.issn.1671-6345.2009.01.013. [41] 席家驹, 文军, 田辉, 等. 2014. AMSR-E遥感土壤湿度产品在青藏高原地区的适用性[J].农业工程学报, 30 (13):194-202. doi: 10.3969/j.issn.1002-6819.2014.13.024Xi Jiaju, Wen Jun, Tian Hui, et al. 2014. Applicability evaluation of AMSR-E remote sensing soil moisture products in Qinghai-Tibet Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (in Chinese), 30 (13):194-202, doi: 10.3969/j.issn.1002-6819.2014.13.024. [42] 熊建胜, 张宇, 王少影, 等. 2014. CLM4.0土壤水分传输方案改进在青藏高原陆面过程模拟中的效应[J].高原气象, 33 (2):323-336. doi: 10.7522/j.issn.1000-0534.2014.00012Xiong Jiansheng, Zhang Yu, Wang Shaoying, et al. 2014. Influence of soil moisture transmission scheme improvement in CLM4.0 on simulation of land surface process in Qinghai-Xizang Plateau[J]. Plateau Meteorology (in Chinese), 33 (2):323-336, doi: 10.7522/j.issn.1000-0534.2014.00012. [43] 徐宾, 师春香, 姜立鹏, 等. 2015.东亚多卫星集成降水业务系统[J].气象科技, 43 (6):1007-1014. doi: 10.3969/j.issn.1671-6345.2015.06.001Xu Bin, Shi Chunxiang, Jiang Lipeng, et al. 2015. Multi-satellite integrated operational system of East Asian precipitation[J]. Meteorological Science and Technology (in Chinese), 43(6):1007-1014, doi: 10.3969/j.issn.1671-6345.2015.06.001. [44] Yang K, Huang G W, Tamai N. 2001. A hybrid model for estimating global solar radiation[J]. Solar Energy, 70 (1):13-22, doi: 10.1016/S0038-092X(00)00121-3. [45] 叶笃正, 高由禧. 1979.青藏高原气象学[M].北京:科学出版社, 271pp.Ye Duzheng, Gao Youxi. 1979. Meteorology of Qinghai-Xizang Plateau (in Chinese)[M]. Beijing:Science Press, 271pp. [46] 张涛, 苗春生, 王新. 2014. LAPS与STMAS地面气温融合效果对比试验[J].高原气象, 33 (3):743-752. doi: 10.7522/j.issn.1000-0534.2013.00046Zhang Tao, Miao Chunsheng, Wang Xin. 2014. Comparison tests of the integration effect of surface temperature by LAPS and STMAS[J]. Plateau Meteorology (in Chinese), 33 (3):743-752, doi: 10.7522/j.issn.1000-0534.2013.00046. [47] 朱晨, 师春香, 席琳, 等. 2013.中国区域不同深度土壤湿度模拟和评估[J].气象科技, 41 (3):529-536. doi: 10.3969/j.issn.1671-6345.2013.03.019Zhu Chen, Shi Chunxiang, Xi Lin, et al. 2013. Simulation and assessment of soil moisture at different depths in China area[J]. Meteorological Science and Technology (in Chinese), 41 (3):529-536, doi: 10.3969/j.issn.1671-6345.2013.03.019. [48] 朱智, 师春香. 2014.中国气象局陆面同化系统和全球陆面同化系统对中国区域土壤湿度的模拟与评估[J].科学技术与工程, 14 (32):138-144. doi: 10.3969/j.issn.1671-1815.2014.32.028Zhu Zhi, Shi Chunxiang. 2014. Simulation and evaluation of CLDAS and GLDAS soil moisture data in China[J]. Science Technology and Engineering (in Chinese), 14 (32):138-144, doi: 10.3969/j.issn.1671-1815.2014.32.028. [49] 朱智. 2016. 中国区域高时空分辨率驱动数据的建立及其在Noah-MP陆面模式中的应用[D]. 南京信息工程大学硕士学位论文, 109pp. http://cdmd.cnki.com.cn/Article/CDMD-10300-1016197753.htmZhu Zhi. 2016. Construction of high spatial and temporal resolution forcing data and its application in Noah-MP land surface model[D]. M. S. thesis (in Chinese), Nanjing University of Information Science and Technology, 109pp. http://cdmd.cnki.com.cn/Article/CDMD-10300-1016197753.htm [50] 卓嘎, 陈涛, 周刊社, 等. 2015. 2009-2010年青藏高原土壤湿度的时空分布特征[J].冰川冻土, 37 (3):625-634. doi: 10.7522/j.issn.1000-0240.2015.0070Zhuo Ga, Chen Tao, Zhou Kanshe, et al. 2015. Spatial and temporal distribution of soil moisture over the Tibetan Plateau during 2009-2010[J]. Journal of Glaciology and Geocryology (in Chinese), 37 (3):325-634, doi:10.7522/j.issn.1000-0240. 2015.0070. [51] 卓嘎, 陈涛, 格桑. 2017.青藏高原及其典型区域土壤湿度的分布和变化特征[J].南京信息工程大学学报, 9 (4):445-454. doi: 10.13878/j.cnki.jnuist.2017.04.014Zhuo Ga, Chen Tao, Ge Sang. 2017. Distribution and variation of soil moisture over the Tibetan Plateau and its typical areas[J]. Journal of Nanjing University of Information Science and Technology (in Chinese), 9 (4):445-454, doi: 10.13878/j.cnki.jnuist.2017.04.014. -