高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用人工神经网络模型预测西北太平洋热带气旋生成频数

海滢 陈光华

海滢, 陈光华. 利用人工神经网络模型预测西北太平洋热带气旋生成频数[J]. 气候与环境研究, 2019, 24(3): 324-332. doi: 10.3878/j.issn.1006-9585.2019.18110
引用本文: 海滢, 陈光华. 利用人工神经网络模型预测西北太平洋热带气旋生成频数[J]. 气候与环境研究, 2019, 24(3): 324-332. doi: 10.3878/j.issn.1006-9585.2019.18110
Prediction of Frequency of Tropical Cyclones Forming over the Western North Pacific Using An Artificial Neural Network Model[J]. Climatic and Environmental Research, 2019, 24(3): 324-332. doi: 10.3878/j.issn.1006-9585.2019.18110
Citation: Prediction of Frequency of Tropical Cyclones Forming over the Western North Pacific Using An Artificial Neural Network Model[J]. Climatic and Environmental Research, 2019, 24(3): 324-332. doi: 10.3878/j.issn.1006-9585.2019.18110

利用人工神经网络模型预测西北太平洋热带气旋生成频数

doi: 10.3878/j.issn.1006-9585.2019.18110
基金项目: 国家自然科学基金项目 41775063、41475074,国家重点研发计划项目2017YFC1501901

Prediction of Frequency of Tropical Cyclones Forming over the Western North Pacific Using An Artificial Neural Network Model

Funds: National Natural Science Fundation of China (Grants 41775063 and 41475074), National Key Research and Development Program of China Grant 2017YFC1501901National Natural Science Fundation of China (Grants 41775063 and 41475074), National Key Research and Development Program of China (Grant 2017YFC1501901)
  • 摘要: 通过对60年(1950~2009年)北半球夏、秋季(6~10月)热带气旋(TC)频数与春季(3~5月)大尺度环境变量的相关分析,挑选出8个相关性较高的前期预报因子建立人工神经网络(ANN)模型,对2010~2017年8年夏、秋季TC频数进行回报,并将回报结果与传统多元线性回归(MLR)方法所得结果进行对比分析。结果表明,ANN模型对60年历史数据的拟合精度高,相关系数高达0.99,平均绝对误差低至0.77。在8年回报中,ANN模型相关系数为0.80,平均绝对误差为1.97;而MLR模型相关系数仅为0.46,平均绝对误差为3.30。ANN模型在历史数据拟合和回报中的表现都明显优于MLR模型,未来可考虑应用于实际的业务预测中。
  • [1] Acharya N , Chattopadhyay S , Kulkarni M A , et al . 2012. A neurocomputing approach to predict monsoon rainfall in monthly scale using SST anomaly as a predictor [J]. Acta Geophysica, 60(1): 260-279. doi:10.2478/s11600-011-0044-y
    [2] Bengio Y , Delalleau O . 2011. On the expressive power of deep architectures [M]//Kivinen J, Szepesvári C, Ukkonen E, et al . Algorithmic Learning Theory. Berlin: Springer-Verlag. doi:10.1007/978-3-642-24412-4_3
    [3] Chan J C L . 1985. Tropical cyclone activity in the Northwest Pacific in relation to the El Ni?o/Southern Oscillation phenomenon[J]. Mon. Wea. Rev., 113(4): 599-606. doi:10.1175/1520-0493(1985)113 <0599:TCAITN> 2.0.CO;2
    [4] Chan J C L . 1995. Tropical cyclone activity in the western North Pacific in relation to the stratospheric Quasi-Biennial Oscillation[J]. Mon. Wea. Rev., 123(8): 2567-2571. doi:10.1175/1520-0493(1995)123 <2567:Tcaitw> 2.0.Co;2
    [5] Chan J C L . 2000. Tropical cyclone activity over the western North Pacific associated with El Ni?o and La Ni?a Events[J]. J. Climate, 13(16): 2960-2972. doi:10.1175/1520-0442(2000)013 <2960:TCAOTW> 2.0.CO;2
    [6] Chan J C L , Shi J E , Lam C M . 1998. Seasonal forecasting of tropical cyclone activity over the western North Pacific and the South China Sea[J]. Wea. Forecasting, 13(4): 997-1004. doi:10.1175/1520-0434(1998)013 <0997:SFOTCA> 2.0.CO;2
    [7] Chan J C L , Shi J E , Liu K S . 2001. Improvements in the seasonal forecasting of tropical cyclone activity over the western North Pacific[J]. Wea. Forecasting, 16(4): 491-498. doi:10.1175/1520-0434(2001)016 <0491:IITSFO> 2.0.CO;2
    [8] 陈光华, 黄荣辉 . 2006. 西北太平洋暖池热状态对热带气旋活动的影响[J]. 热带气象学报, 22(6): 527-532. Chen Guanghua, Huang Ronghui. 2006. The effect of warm pool thermal states on tropical cyclone in West Northwest Pacific[J]. Journal of Tropical Meteorology (in Chinese), 22(6): 527-532. doi:10.3969/j.issn.1004-4965.2006.06.002
    [9] Chu P S , Zhao X . 2007. A bayesian regression approach for predicting seasonal tropical cyclone activity over the central North Pacific[J]. J. Climate, 20(15): 4002-4013. doi:10.1175/jcli4214.1
    [10] Fan K . 2007. New predictors and a new prediction model for the typhoon frequency over western North Pacific[J]. Science in China Series D: Earth Sciences, 50(9): 1417-1423. doi:10.1007/s11430-007-0105-x
    [11] Fan K . 2009. Seasonal forecast model for the number of tropical cyclones to make landfall in China[J]. Atmospheric and Oceanic Science Letters, 2(5): 251-254. doi:10.1080/16742834.2009.11446811
    [12] Fan K , Wang H J . 2009. A new approach to forecasting typhoon frequency over the Western North Pacific[J]. Wea. Forecasting, 24(4): 974-986. doi:10.1175/2009WAF2222194.1
    [13] Goh Z C A , Chan J C L . 2010. An improved statistical scheme for the prediction of tropical cyclones making landfall in South China[J]. Wea. Forecasting, 25(2): 587-593. doi:10.1175/2009waf2222305.1
    [14] Gray W M . 1984a. Atlantic seasonal hurricane frequency. Part I: El Ni?o and 30 mb Quasi-Biennial Oscillation influences[J]. Mon. Wea. Rev., 112(9): 1649-1668. doi:10.1175/1520-0493(1984)112 <1649:ASHFPI> 2.0.CO;2
    [15] Gray W M . 1984b. Atlantic seasonal hurricane frequency. Part II: Forecasting its variability[J]. Mon. Wea. Rev., 112(9): 1669-1683. doi:10.1175/1520-0493(1984)112 <1669:ASHFPI> 2.0.CO;2
    [16] 何慧, 欧艺, 李艳兰 . 2009. 影响广西的热带气旋年频数的BP神经网络预测模型[J]. 热带气象学报, 25(4): 407-412. He Hui, Ou Yi, Li Yanlan. 2009. A BP neural network prediction model for the annual frequency of tropical cyclones affecting Guangxi[J]. Journal of Tropical Meteorology (in Chinese), 25(4): 407-412. doi:10.3969/j.issn.1004-4965.2009.04.004
    [17] 何敏, 龚振淞, 徐明, 等 . 2007. 高低层纬向风异常与西北太平洋热带气旋生成年频数关系的研究[J]. 热带气象学报, 23(3): 277-283. He Ming, Gong Zhensong, Xu Min, et al . 2007. Relationships between zonal wind anomalies in high and low troposphere and annual frequency of NW Pacific tropical cyclones[J]. Journal of Tropical Meteorology (in Chinese), 23(3): 277-283. doi:10.3969/j.issn.1004-4965.2007.03.010
    [18] 黄小刚, 费建芳, 陈佩燕 . 2009. 利用神经网络方法建立热带气旋强度预报模型[J]. 应用气象学报, 20(6): 699-705. Huang Xiaogang, Fei Jianfang, Chen Peiyan. 2009. A neural network approach to predict tropical cyclone intensity[J]. Journal of Applied Meteorological Science (in Chinese), 20(6): 699-705. doi:10.3969/j.issn.1001-7313.2009.06.007
    [19] Kim H M , Webster P J . 2010. Extended-range seasonal hurricane forecasts for the North Atlantic with a hybrid dynamical-statistical model[J]. Geophys. Res. Lett., 37(21): L21705. doi:10.1029/2010gl044792
    [20] Kim H S , Ho C H , Kim J H , et al . 2012. Track-pattern-based model for seasonal prediction of tropical cyclone activity in the Western North Pacific [J]. J. Climate, 25(13): 4660-4678. doi:10.1175/JCLI-D-11-00236.1
    [21] Kwon H J , Lee W J , Won S H , et al . 2007. Statistical ensemble prediction of the tropical cyclone activity over the western North Pacific [J]. Geophys. Res. Lett., 34(24): L24805. doi:10.1029/2007GL032308
    [22] 李真真, 吴立广, 刘青元 . 2016. 近20a影响我国台风活动变化趋势[J]. 气象科学, 36(6): 752-759. Li Zhenzhen, Wu Liguang, Liu Qingyuan. 2016. Variation trend of typhoon activity influencing China during the past 20 years[J]. Journal of the Meteorological Sciences (in Chinese), 36(6): 752-759. doi:10.3969/2015jms.0089
    [23] Nath S , Kotal S D , Kundu P K . 2015. Seasonal prediction of tropical cyclone activity over the North Indian Ocean using the neural network model[J]. Atmósfera, 28(4): 271-281. doi:10.20937/atm.2015.28.04.06
    [24] Nath S , Kotal S D , Kundu P K . 2016. Seasonal prediction of tropical cyclone activity over the North Indian Ocean using three artificial neural networks[J]. Meteor. Atmos. Phys., 128(6): 751-762. doi:10.1007/s00703-016-0446-0
    [25] Nicholls N . 1979. A possible method for predicting seasonal tropical cyclone activity in the Australian region[J]. Mon. Wea. Rev., 107(9): 1221-1224. doi:10.1175/1520-0493(1979)107 <1221:APMFPS> 2.0.CO;2
    [26] Nicholls N . 1985. Predictability of interannual variations of Australian seasonal tropical cyclone activity[J]. Mon. Wea. Rev., 113(7): 1144-1149. doi:10.1175/1520-0493(1985)113 <1144:POIVOA> 2.0.CO;2
    [27] 苏志重, 余锦华, 孙丞虎, 等 . 2010. IPRC区域气候模式对西北太平洋热带气旋潜在预测能力的初步检验[J]. 热带气象学报, 26(2): 165-173. Su Zhizhong, Yu Jinhua, Sun Chenghu, et al . 2010. The initial evaluation of tropical cyclone potential predictability in the northwestern Pacific using the IPRC regional climate model[J]. Journal of Tropical Meteorology (in Chinese), 26(2): 165-173. doi:10.3969/j.issn.1004-4965.2010.02.005
    [28] 王会军, 孙建奇, 范可 . 2007. 北太平洋涛动与台风和飓风频次的关系研究[J]. 中国科学 D辑: 地球科学, 37(7): 966-973. Wang Huijun, Sun Jianqi, Fan Ke. 2007. Relationships between the North Pacific Oscillation and the typhoon/hurricane frequencies[J]. Science in China Series D: Earth Sciences, 50(9): 1409-1416. doi:10.3969/j.issn.1674-7240.2007.07.013
    [29] Willmott C J . 1982. Some comments on the evaluation of model performance[J]. Bull. Amer. Meteor. Soc., 63(11): 1309-1369. doi:10.1175/1520-0477(1982)063 <1309:SCOTEO> 2.0.CO;2
    [30] 尹宜舟, 罗勇, Gemmer M , 等 . 2010. 基于BP神经网络技术的西北太平洋热带气旋年频数预测[J]. 热带气象学报, 26(5): 614-619. Yin Yizhou, Luo Yong, Gemmer M, et al . 2010. Forecast method study on yearly tropical cyclone frequency in Northwest Pacific based on the BP neural network technique[J]. Journal of Tropical Meteorology (in Chinese), 26(5): 614-619. doi:10.3969/j.issn.1004-4965.2010.05.014
    [31] Zhan R F , Wang Y Q . 2016. CFSv2-Based statistical prediction for seasonal accumulated cyclone energy (ACE) over the Western North Pacific[J]. J. Climate, 29(2): 525-541. doi:10.1175/JCLI-D-15-0059.1
    [32] Zhan R F , Wang Y Q , Wen M . 2013. The SST gradient between the Southwestern Pacific and the Western Pacific warm pool: A new factor controlling the northwestern Pacific tropical cyclone genesis frequency[J]. J. Climate, 26(7): 2408-2415. doi:10.1175/jcli-d-12-00798.1
    [33] Zhan R F , Wang Y Q , Wu C C . 2011. Impact of SSTA in the East Indian Ocean on the frequency of Northwest Pacific tropical cyclones: A regional atmospheric model study[J]. J. Climate, 24(23): 6227-6242. doi:10.1175/jcli-d-10-05014.1
    [34] Zhan R F , Wang Y Q , Ying M . 2012. Seasonal forecasts of tropical cyclone activity over the western North Pacific: A review[J]. Tropical Cyclone Research and Review, 1(3): 307-324. doi:10.6057/2012TCRR03.07
    [35] 张娟, 周永华, 黄宝霞, 等 . 2016. 人工神经网络在台风风暴潮模拟中的解释应用[J]. 海洋预报, 33(2): 60-65. Zhang Juan, Zhou Yonghua, Huang Baoxia, et al . 2016. Interpretation of numerical storm surge model results using the artificial neural network[J]. Marine Forecasts (in Chinese), 33(2): 60-65. doi:10.11737/j.issn.1003-0239.2016.02.009
  • 加载中
计量
  • 文章访问数:  723
  • HTML全文浏览量:  18
  • PDF下载量:  685
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-11

目录

    /

    返回文章
    返回