高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMIP5模式降水订正法及未来30年中国降水预估

杨阳 戴新刚 唐恒伟 张蓓

杨阳, 戴新刚, 唐恒伟, 张蓓. CMIP5模式降水订正法及未来30年中国降水预估[J]. 气候与环境研究, 2019, 24(6): 769-784. doi: 10.3878/j.issn.1006-9585.2019.19021
引用本文: 杨阳, 戴新刚, 唐恒伟, 张蓓. CMIP5模式降水订正法及未来30年中国降水预估[J]. 气候与环境研究, 2019, 24(6): 769-784. doi: 10.3878/j.issn.1006-9585.2019.19021
YANG Yang, DAI Xingang, TONG Hangwai, Zhang Bei. CMIP5 Model Precipitation Bias-Correction Methods and Projected China Precipitation for the Next 30 Years[J]. Climatic and Environmental Research, 2019, 24(6): 769-784. doi: 10.3878/j.issn.1006-9585.2019.19021
Citation: YANG Yang, DAI Xingang, TONG Hangwai, Zhang Bei. CMIP5 Model Precipitation Bias-Correction Methods and Projected China Precipitation for the Next 30 Years[J]. Climatic and Environmental Research, 2019, 24(6): 769-784. doi: 10.3878/j.issn.1006-9585.2019.19021

CMIP5模式降水订正法及未来30年中国降水预估

doi: 10.3878/j.issn.1006-9585.2019.19021
基金项目: 国家自然科学基金项目41475075、41675087,国家重点研发计划2016YFA0600400

CMIP5 Model Precipitation Bias-Correction Methods and Projected China Precipitation for the Next 30 Years

Funds: National Natural Science Foundation of China Grants 41475075 and 41675087;National Key Research and Development Program of China Grant 2016YFA0600400National Natural Science Foundation of China (Grants 41475075 and 41675087), National Key Research and Development Program of China (Grant 2016YFA0600400)
  • 摘要: 借助英国气候研究所(Climate Research Unit, CRU)全球陆地格点分析数据集(CRU TS v4.0)月降水资料和24个国际耦合模式比较计划第五阶段(Coupled Model Intercomparison Project Phase 5, CMIP5)模式历史气候模拟及RCP4.5情景下的降水预估数据,设计了多种回归方案并对模式降水预估偏差进行订正。这些方案包括一元回归、一元对数回归、一元差分回归、一元对数差分回归、多元回归、多元对数回归、多元差分回归、多元对数差分回归和简单移除气候漂移等。2006~2015年中国大陆模式降水预估的订正结果表明,一元回归订正法普遍优于多元回归订正和扣除气候漂移订正法,其中一元对数回归法的效果最好,其降水距平同号率(Anomaly Rate, AR)和降水距平百分率相关系数(Anomaly Percentage Correlation Coefficient, APCC)最高,分别达到69%和0.5;而降水距平相关系数(Anomaly Correlation Coefficient, ACC)最高的是一元对数差分回归法。不同回归订正法所得预估结果的距平同号格点分布显示,一元对数回归法在北方优于南方,而一元差分(年际增量)或对数差分回归法在南方优于北方。这直接导致在中国南方区域(95°E以东,35°N以南)一元对数回归或多元对数回归订正结果的AR、ACC和APCC均低于对应的差分/对数差分回归法,在北方和西部地区则与此相反。因此,模式降水的回归订正方案具有区域性,这可能源于不同区域降水序列统计性质的差异。用区域组合回归订正法,即在南方用一元差分回归订正,其余地区用一元对数回归订正,其降水预估场的AR提高到72%,但ACC和APCC均略有下降,原因是差分回归订正增加了预估降水场的方差。对RCP4.5情景下2016~2045年24个模式集合平均降水预估的组合回归订正结果显示,相对于1976~2005年平均,未来30年降水异常大致呈南北少,中间多的格局,其中长江中下游、江南中西部、西南东北部、华南沿海和海南省等地降水偏少10%~20%,淮河流域、三江源区和台湾省降水偏多10%~40%,西北东部、华北和东北大部降水正常或略偏少。从降水百分率方差看,模式群的离散度(不确定度)呈现东部小,西部大的分布特征,说明模式预估的西北中部和青藏高原西部等降水偏少区的不确定性较大;而河套北部、华北南部和江南东部等地对应于2006~2015年检验期的“盲区”(模式与观测降水距平反号),其降水预估参考价值可能不大,需要引入他法加以改进。
  • [1] Barnston A G, Mason S J, Goddard L, et al. 2003. Multimodel ensembling in seasonal climate forecasting at IRI [J]. Bull. Amer. Meteor. Soc., 84(12): 1783-1796. doi: 10.1175/BAMS-84-12-1783
    [2] 陈超辉, 李崇银, 谭言科, 等. 2010. 基于交叉验证的多模式超级集合预报方法研究 [J]. 气象学报, 68(4): 464-476.
    [3] 陈活泼, 孙建奇, 陈晓丽. 2012. 我国夏季降水及相关大气环流场未来变化的预估及不确定性分析 [J]. 气候与环境研究, 17(2): 171-183.
    [4] 陈威霖, 江志红, 黄强. 2012. 基于统计降尺度模型的江淮流域极端气候的模拟与预估 [J]. 大气科学学报, 35(5): 578-590.
    [5] 陈晓晨, 徐影, 许崇海, 等. 2014. CMIP5全球气候模式对中国地区降水模拟能力的评估 [J]. 气候变化研究进展, 10(3): 217-225.
    [6] 成爱芳, 冯起, 张健恺, 等. 2015. 未来气候情景下气候变化响应过程研究综述 [J]. 地理科学, 35(1): 84-90.
    [7] Dai A G, Fyfe J C, Xie S P, et al. 2015. Decadal modulation of global surface temperature by internal climate variability [J]. Nature Climate Change, 5(6): 555-559. doi: 10.1038/nclimate2605
    [8] 戴新刚. 2007. 欧盟ADAM项目简介 [J]. 气候变化研究进展, 3(3): 185
    [9] 戴新刚, 熊喆, Kramer K, et al. 2012. 羊啃食动力学模拟与内蒙古西部气候变化适应 [J]. 中国沙漠, 32(5): 1442-1450.
    [10] Dai X G, Liu Y, Wang P. 2015. Warm-dry collocation of recent drought in southwestern China tied to moisture transport and climate warming [J]. Chinese Physics B, 24(4): 049201. doi: 10.1088/1674-1056/24/4/049201
    [11] Dai X G, Wang P. 2018. Identifying the early 2000s hiatus associated with internal climate variability [J]. Scientific Reports, 8: 13602. doi: 10.1038/s41598-018-31862-z
    [12] 范可, 王会军, Choi Y J. 2007. 一个长江中下游夏季降水的物理统计预测模型 [J]. 科学通报, 52(24): 2900-2905.
    [13] Fan L J, Chen D L, Fu C B, et al. 2013. Statistical downscaling of summer temperature extremes in northern China [J]. Advances in Atmospheric Sciences, 30(4): 1085-1095. doi: 10.1007/s00376-012-2057-0
    [14] 范丽军, 符淙斌, 陈德亮. 2005. 统计降尺度法对未来区域气候变化情景预估的研究进展 [J]. 地球科学进展, 20(3): 320-329.
    [15] Gao X J, Wang M L, Giorgi F. 2013. Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0 [J]. Atmospheric and Oceanic Science Letters, 6(5): 381-386. doi: 10.3878/j.issn.1674-2834.13.0029
    [16] Harris I, Jones P D, Osborn T J, et al. 2014. Updated high-resolution grids of monthly climatic observations-The CRU TS3.10 dataset [J]. International Journal of Climatology, 34(3): 623-642. doi: 10.1002/joc.3711
    [17] 贺冰蕊, 翟盘茂. 2018. 中国1961~2016年夏季持续和非持续性极端降水的变化特征 [J]. 气候变化研究进展, 14(5): 437-444.
    [18] 何建坤. 2018. 新时代应对气候变化和低碳发展长期战略的新思考 [J]. 武汉大学学报(哲学社会科学版), 71(4): 13-21.
    [19] Huang J P, Yu H P, Guan X D, et al. 2016. Accelerated dryland expansion under climate change [J]. Nature Climate Change, 6(2): 166-171. doi: 10.1038/nclimate2837
    [20] Huang P, Ying J. 2015. A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming [J]. J. Climate, 28(12): 4706-4723. doi: 10.1175/JCLI-D-14-00833.1
    [21] IPCC. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 976.
    [22] Jiang D B, Wang H J, Lang X M. 2005. Evaluation of East Asian climatology as simulated by seven coupled models [J]. Advances in Atmospheric Sciences, 22(4): 479-495. doi: 10.1007/BF02918482
    [23] Ke Z J, Dong W J, Zhang P Q, et al. 2009. An analysis of the difference between the multiple linear regression approach and the multimodel ensemble mean [J]. Advances in Atmospheric Sciences, 26(6): 1157-1168. doi: 10.1007/s00376-009-8024-8
    [24] Li Q X, Dong W J, Li W, et al. 2010. Assessment of the uncertainties in temperature change in China during the last century [J]. Chinese Science Bulletin, 55(19): 1974-1982. doi: 10.1007/s11434-010-3209-1
    [25] Meehl G A, Tebaldi C. 2004. More intense, more frequent, and longer lasting heat waves in the 21st century [J]. Science, 305(5686): 994-997. doi: 10.1126/science.1098704
    [26] Meinshausen M, Smith S J, Calvin K, et al. 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 [J]. Climatic Change, 109: 213-241. doi: 10.1007/s10584-011-0156-z
    [27] Moss R H, Edmonds J A, Hibbard K A, et al. 2010. The next generation of scenarios for climate change research and assessment [J]. Nature, 463(7282): 747-756. doi: 10.1038/nature08823
    [28] 秦大河, Stocker T, 259名作者和TSU. 2014. IPCC第五次评估报告第一工作组报告的亮点结论 [J]. 气候变化研究进展, 10(1): 1-6. Qin Dahe, Stocker T, 259 Authors and TSU. 2014. Highlights of the IPCC working group I fifth assessment report [J]. Progressus Inquisitiones de Mutatione Climatis (in Chinese), 10(1): 1-6. doi: 10.3969/j.issn.1673-1719.2014.01.001
    [29] Raftery A E, Gneiting T, Balabdaoui F, et al. 2005. Using Bayesian model averaging to calibrate forecast ensembles [J]. Mon. Wea. Rev., 133(5): 1155-1174. doi: 10.1175/MWR2906.1
    [30] Riahi K, Rao S, Krey V, et al. 2011. RCP8.5—A scenario of comparatively high greenhouse gas emissions [J]. Climatic Change, 109(1-2): 33-57. doi: 10.1007/s10584-011-0149-y
    [31] Semenov M A, Stratonovitch P. 2010. Use of multi-model ensembles from global climate models for assessment of climate change impacts [J]. Climate Research, 41(1): 1-14. doi: 10.3354/cr00836
    [32] 沈永平, 王国亚. 2013. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点 [J]. 冰川冻土, 35(5): 1068-1076.
    [33] 孙建奇, 马洁华, 陈活泼, 等. 2018. 降尺度方法在东亚气候预测中的应用 [J]. 大气科学, 42(4): 806-822.
    [34] Tàbara J D, Cots F, Dai X G, et al. 2009. Social learning on climate change among regional agents. Insights from China, Eastern Europe and Iberia [M]//Leal Filho W, Mannke F. Interdisciplinary Aspects of Climate Change. Frankfurt, DE: Peter Lang AG - International Academic Publishers, 121-150.
    [35] Tàbara J D, Dai X G, Jia G S, et al. 2010. The climate learning ladder. A pragmatic procedure to support climate adaptation[J]. Environmental Policy and Governance, 20(1): 1-11. doi: 10.1002/eet.530
    [36] Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram [J]. J. Geophys. Res., 106(D7): 7183-7192. doi: 10.1029/2000JD900719
    [37] Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design [J]. Bull. Amer. Meteor. Soc., 93(4): 485-498. doi: 10.1175/BAMS-D-11-00094.1
    [38] Thomson A M, Calvin K V, Smith S J, et al. 2011. RCP4.5: A pathway for stabilization of radiative forcing by 2100 [J]. Climatic Change, 109(1-2): 77-94. doi: 10.1007/s10584-011-0151-4
    [39] Tian D, Guo Y, Dong W J. 2015. Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models [J]. Advances in Atmospheric Sciences, 32(4): 487-496. doi: 10.1007/s00376-014-4102-7
    [40] 田向军, 谢正辉, 王爱慧, 等. 2011. 一种求解贝叶斯模型平均的新方法 [J]. 中国科学: 地球科学, 41(11): 1679-1687.
    [41] Van Vuuren D P, Stehfest E, Den Elzen M G J, et al. 2011. RCP2.6: Exploring the possibility to keep global mean temperature increase below 2oC [J]. Climatic Change, 109(1-2): 95-116. doi: 10.1007/s10584-011-0152-3
    [42] 魏培培, 董广涛, 史军, 等. 2019. 华东地区极端降水动力降尺度模拟及未来预估 [J]. 气候与环境研究, 24(1): 86-104.
    [43] Werners S E, West J, Leemans R, et al. 2011. Opportunities and constraints for climate adaptation in regional water and land use planning [M]//Leal Filho W. The Economic, Social and Political Elements of Climate Change. Berlin, Heidelberg: Springer, 669-692. doi: 10.1007/978-3-642-14776-0_40
    [44] Xu Y, Xu C H. 2012. Preliminary assessment of simulations of climate changes over china by CMIP5 multi-models [J]. Atmospheric and Oceanic Science Letters, 5(6): 489-494. doi: 10.1080/16742834.2012.11447041
    [45] Xu Z F, Yang Z L. 2012. An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations [J]. J. Climate, 25(18): 6271-6286. doi: 10.1175/JCLI-D-12-00005.1
    [46] 姚世博, 姜大膀, 范广洲. 2018. 中国降水季节性的预估 [J]. 大气科学, 42(6): 1378-1392.
    [47] 叶笃正, 董文杰. 2010. 联合国应如何组织人类开展有序应对气候变化问题的科学研究?——我们的思考和建议 [J]. 气候变化研究进展, 6(5): 381-382.
    [48] 张凯静, 汪萍, 戴新刚. 2017. 中国降水回归模型设计策略与回报检验 [J]. 海洋气象学报, 37(3): 27-35.
    [49] Zhang X L, Yan X D. 2015. A new statistical precipitation downscaling method with Bayesian model averaging: A case study in China [J]. Climate Dynamics, 45(9-10): 2541-2555. doi: 10.1007/s00382-015-2491-7
    [50] 张学文. 1981. 气象预告问题的信息分析 [M]. 北京: 科学出版社, 176pp. Zhang Xuewen. 1981. Information Analysis of Weather Forecasting Asuues (in Chinese) [M]. Beijing: Science Press, 176pp.
    [51] 张蓓, 戴新刚. 2016. 2006~2013年CMIP5模式中国降水预估误差分析 [J]. 大气科学, 40(5): 981-994.
    [52] 张蓓, 戴新刚. 2017. 基于CMIP5的2006~2015年中国气温预估偏差分析及订正 [J]. 高原气象, 36(6): 1619-1629.
    [53] 周莉, 兰明才, 蔡荣辉, 等. 2018. 21世纪前期长江中下游流域极端降水预估及不确定性分析 [J]. 气象学报, 76(1): 47-61.
    [54] Zou L W, Zhou T J. 2013. Near future (2016-40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM [J]. Advances in Atmospheric Sciences, 30(3): 806-818. doi: 10.1007/s00376-013-2209-x
  • 加载中
计量
  • 文章访问数:  457
  • HTML全文浏览量:  19
  • PDF下载量:  342
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-20

目录

    /

    返回文章
    返回