高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MTCSWA风场资料对西北太平洋热带气旋风场结构的气候统计特征研究

陈可鑫 陈光华 向纯怡 李兴良

陈可鑫, 陈光华, 向纯怡, 等. 2020. 基于MTCSWA风场资料对西北太平洋热带气旋风场结构的气候统计特征研究[J]. 气候与环境研究, 25(6): 588−600 doi: 10.3878/j.issn.1006-9585.2020.19122
引用本文: 陈可鑫, 陈光华, 向纯怡, 等. 2020. 基于MTCSWA风场资料对西北太平洋热带气旋风场结构的气候统计特征研究[J]. 气候与环境研究, 25(6): 588−600 doi: 10.3878/j.issn.1006-9585.2020.19122
CHEN Kexin, CHEN Guanghua, XIANG Chunyi, et al. 2020. Statistical Characteristics of Wind Field Structures of Tropical Cyclones over the Western North Pacific Based on MTCSWA Data [J]. Climatic and Environmental Research (in Chinese), 25 (6): 588−600 doi: 10.3878/j.issn.1006-9585.2020.19122
Citation: CHEN Kexin, CHEN Guanghua, XIANG Chunyi, et al. 2020. Statistical Characteristics of Wind Field Structures of Tropical Cyclones over the Western North Pacific Based on MTCSWA Data [J]. Climatic and Environmental Research (in Chinese), 25 (6): 588−600 doi: 10.3878/j.issn.1006-9585.2020.19122

基于MTCSWA风场资料对西北太平洋热带气旋风场结构的气候统计特征研究

doi: 10.3878/j.issn.1006-9585.2020.19122
基金项目: 国家重点研发计划项目2017YFA0603901,国家自然科学基金项目41975071、41775063
详细信息
    作者简介:

    陈可鑫,女,1997年出生,硕士研究生,主要从事热带气旋研究。E-mail: chenkexin@mail.iap.ac.cn

    通讯作者:

    陈光华,E-mail: cgh@mail.iap.ac.cn

  • 中图分类号: P458.1+24

Statistical Characteristics of Wind Field Structures of Tropical Cyclones over the Western North Pacific Based on MTCSWA Data

Funds: National Key Research and Development Program of China (Grant 2017YFA0603901), National Natural Science Foundation of China (Grants 41975071 and 41775063)
  • 摘要: 基于多平台热带气旋表面风场资料(MTCSWA),研究了2007~2016年6~11月西北太平洋上不同尺度热带气旋(TC)的气候统计特征,TC各级风圈半径在不同象限的变化特征、风场结构的对称度及二者与强度变化之间的相关性。利用7级风圈半径与TC近中心最大持续风速(MSW)来定义TC的尺度和强度。结果表明,西北太平洋上TC的平均尺度为221.9 km,其中小TC平均尺度为96.4 km,大TC平均尺度为346.4 km。大TC活动位置的空间分布较小TC更为集中,整体活动范围较小TC偏北。TC尺度的峰值出现在8月和10月。在TC的风场结构中,7级、10级、12级风圈的平均半径分别为221.9、121.0、77.4 km。TC风圈的对称度的统计结果表明7级风圈的对称度最低,12级风圈的对称度最高。相关分析表明,在TC的生命史中,各级风圈半径与其强度存在一定的正相关关系,其中12级风圈半径与强度的相关性最低;对于同一风圈而言,在TC的不同发展阶段中,不同象限的风圈半径与强度的相关性不同。在TC的风场结构中,风圈的对称度与TC强度的相关性随着风圈强度的增强而减弱,只有7级风圈的对称度在TC的整个生命周期中表现出与TC强度之间的弱的正相关关系。
  • 图  1  2007~2016年6~11月西北太平上TC平均尺度的季节变化(通过90%的显著性检验)。图中误差线表示1倍均方差,x轴上方的数据表示TC观测数

    Figure  1.  Monthly mean sizes of tropical cyclones (TCs) over the western North Pacific (WNP) from June to November during 2007–2016. Vertical bars denote the mean square error, and numbers on the x-axis denote the number of cases

    图  2  2007~2016年7~11月西北太平洋上大型(L)、中型(M)、小型(S)TC所占百分比的变化

    Figure  2.  Monthly percentage frequencies of large-sized (L), medium-sized (M), and small-sized (S) TCs over the WNP from July to November during 2007–2016

    图  3  2007~2016年7~11月西北太平洋上大型、中型、小型TC平均尺度的变化

    Figure  3.  Monthly mean size of large-sized, medium-sized, and small-sized TCs over the WNP from July to November during 2007–2016

    图  4  2007~2016年6~11月西北太平洋(a)小型和(b)大型TC活动空间分布。方括号中的数字为观测样本数、TC个数、TC的平均尺度以及TC平均活动位置的经纬度,空心圆形为大型、小型TC的平均活动位置

    Figure  4.  Distribution of (a) small-sized and (b) large-sized TCs activities over the WNP from June to November during 2007–2016. Numbers in square brackets denote the number of cases, TCs, mean TC size, and longitude and latitude of the average position of TC activities, and the red hollow circle denotes the average position of small-sized and large-sized TC activities

    图  5  2007~2016年7~10月西北太平洋上(a)小型和(b)大型TC活动位置的纬度分布频率

    Figure  5.  Percentage frequencies of (a) small-sized and (b) large-sized tropical cyclone (TC) activities over the WNP as a function of latitude in July, August, September, and October during 2007–2016

    图  6  2007~2016年7~10月西北太平洋上(a)小型和(b)大型TC活动位置的经度分布频率

    Figure  6.  Percentage frequencies of (a) small-sized and (b) large-sized TCs activities over the WNP as a function of longitude in July, August, September, and October during 2007–2016

    图  7  2007~2016年7~10月西北太平洋(a)小型和(b)大型TC 850 hPa合成环流形式

    Figure  7.  Composite 850-hPa flow pattern of (a) small-sized and (b) large-sized TCs over the WNP from July to October during 2007–2016

    图  8  2007~2016年6~11月西北太平洋(a)7级(34 kt)、(b)10级(50 kt)、(c)12级(65 kt)风圈半径箱线图。箱子中线为风圈半径的第50个百分位点,箱子上下端分别为位于第75、25个百分位点的风圈半径值,虚线的上下端分别为最大、最小值。NE、NW、SW、SE分别表示东北、西北、西南、东南象限

    Figure  8.  Boxplot of the radial extents of the (a) 34 kt, (b) 50 kt, and (c) 65 kt wind speeds over the WNP frome June to November during 2007–2016. The centerline in the box denotes the 50th percentile point; the top and bottom of the box denote the 75th and 25th percentile points, respectively; the top and bottom of the dashed line denote the maximum and minimum values, respectively. NE, NW, SW, and SE denote the northeast, northwest, southwest, and southeast quadrants, respectively

    图  9  2007~2016年6~11月西北太平洋不同强度TC各级风圈(34、50、65 kt)的平均对称度

    Figure  9.  Mean axisymmetricity of the radial extents of the 34, 50, and 65 kt wind speeds in TCs of different intensities over the WNP from June to November during 2007–2016

    图  10  2007~2016年6~11月西北太平洋不同TC强度各级风圈半径箱线图。(a–d)分别为TC强度为ST、STS、TY、STY时的7级(34 kt)风圈半径;(e–g)分别为TC强度为STS、TY、STY时的10级(50 kt)风圈半径;(h–i)分别为TC强度为TY、STY时的12级(65 kt)风圈半径

    Figure  10.  Boxplots of the radial extents of the 34, 50, and 65 kt wind speeds in TCs of different intensities over the WNP from June to November during 2007–2016: (a)–(d) radial extent of the 34 kt wind speed in TCs of TS, STS, TY, and STY intensities; (e)–(g) radial extent of the 50 kt wind speed in TCs of STS, TY, and STY intensities; (h)–(i) radial extent of the 65 kt wind speed in TCs of TY and STY intensities

    表  1  2007~2016年6~11月西北太平洋上TC尺度的统计特征

    Table  1.   Statistical attributes of tropical cyclone (TC) size over the WNP from Jun to November during 2007–2016

    观测记录数TC数TC尺度/(°)(纬度)
    平均值均方差中位数第25个百分位第75个百分位
    7级风圈13281131.920.901.841.142.50
    R17 8141762.130.981.941.412.61
    注:7级风圈行为本文结论,R17行为Chan et al.(2012)的结论
    下载: 导出CSV

    表  2  2007~2016年西北太平洋不同强度的TC 4个象限风圈半径与强度的相关系数

    Table  2.   Correlation coefficients between TC intensities and radial extents of different wind speed thresholds in four quadrants during different periods of TCs over the WNP during 2007–2016

    7级风圈半径与强度相关系数 10级风圈半径与强度相关系数 12级风圈半径与强度相关系数
    NENWSWSE NENWSWSE NENWSWSE
    TS0.12*0.12−0.03 0.09
    STS−0.01 0.11−0.03 −0.06* −0.05−0.20*−0.05 −0.20**
    TY 0.20** 0.23** 0.26** 0.17** 0.27** 0.28** 0.26* 0.21** 0.19**0.070.030.16*
    STY及以上−0.19** −0.22** −0.20** −0.28** −0.04−0.05 −0.09−0.12** 0.04 0.01−0.12*−0.03
    注:NE、NW、SW、SE分别表示东北(第一)、西北(第二)、西南(第三)、东南(第四)象限,**、*分别表示通过99%和95%显著性检验,“—”表示风圈不存在
    下载: 导出CSV

    表  3  2007~2016年6~11月西北太平洋TC 7级、10级、12级风圈半径在4个象限的平均值和均方差

    Table  3.   Mean radius and mean square error of the 34, 50, and 65 kt wind speed thresholds in four quadrants of TCs over the WNP from June to November during 2007–2016

    7级风圈半径/km 10级风圈半径/km 12级风圈半径/km
    平均值均方差 平均值均方差 平均值均方差
    整体221.9100.0 121.047.8 77.423.7
    第一象限(NE)237.3126.0 131.659.5 85.836.1
    第二象限(NW)220.6105.4 128.052.0 80.927.2
    第三象限(SW)181.6 87.6 105.747.6 74.827.1
    第四象限(SE)206.4120.6 115.856.1 75.927.0
    下载: 导出CSV

    表  4  2007~2016年6~11月西北太平洋风圈对称度与TC强度的相关系数

    Table  4.   Correlation coefficients between the axisymmetricity of the radial extent of different wind speed thresholds and the intensity of TCs over the WNP from June to November during 2007–2016

    风圈对称度与TC强度的相关系数
    7级风圈10级风圈12级风圈
    TS−0.15*
    STS−0.03 −0.20*
    TY0.23**0.06−0.07
    STY及以上0.17**0.08−0.02
    TC生命周期0.13**−0.02 −0.01
    **、*分别表示通过99%、95%显著性检验。
    下载: 导出CSV
  • [1] Chan K T F, Chan J C L. 2012. Size and strength of tropical cyclones as inferred from QuikSCAT data [J]. Mon. Wea. Rev., 140(3): 811−824. doi: 10.1175/MWR-D-10-05062.1
    [2] Chan K T F, Chan J C L. 2013. Angular momentum transports and synoptic flow patterns associated with tropical cyclone size change [J]. Mon. Wea. Rev., 141(11): 3985−4007. doi: 10.1175/MWR-D-12-00204.1
    [3] Chavas D R, Lin N. 2016. A model for the complete radial structure of the tropical cyclone wind field. Part II: Wind field variability [J]. J. Atmos. Sci., 73(9): 3093−3113. doi: 10.1175/JAS-D-15-0185.1
    [4] Chavas D R, Lin N, Emanuel K A. 2015. A model for the complete radial structure of the tropical cyclone wind field. Part I: Comparison with observed structure [J]. J. Atmos. Sci., 72(9): 3647−3662. doi: 10.1175/JAS-D-15-0014.1
    [5] Chen D Y C, Cheung K K W, Lee C S. 2011. Some implications of core regime wind structures in western North Pacific tropical cyclones [J]. Wea. Forecasting, 26(1): 61−75. doi: 10.1175/2010WAF2222420.1
    [6] Elsner J B, Kossin J P, Jagger T H. 2008. The increasing intensity of the strongest tropical cyclones [J]. Nature, 455(7209): 92−95. doi: 10.1038/nature07234
    [7] Guo X, Tan Z M. 2017. Tropical cyclone fullness: A new concept for interpreting storm intensity [J]. Geophys. Res. Lett., 44(9): 4324−4331. doi: 10.1002/2017GL073680
    [8] Irish J L, Resio D T, Ratcliff J J. 2008. The influence of storm size on hurricane surge [J]. J. Phys. Oceanogr., 38(9): 2003−2013. doi: 10.1175/2008JPO3727.1
    [9] Klotz B W, Jiang H Y. 2017. Examination of surface wind asymmetries in tropical cyclones. Part I: General structure and wind shear impacts [J]. Mon. Wea. Rev., 145(10): 3989−4009. doi: 10.1175/MWR-D-17-0019.1
    [10] Knaff J A, DeMaria M. 2010. NOAA/NESDIS multiplatform tropical cyclone surface wind analysis [Z]. Fort Collins, Colorado: NESDIS/STAR
    [11] Knaff J A, Zehr R M, Goldberg M D, et al. 2000. An example of temperature structure differences in two cyclone systems derived from the advanced microwave sounder unit [J]. Wea. Forecasting, 15(4): 476−483. doi:10.1175/1520-0434(2000)015<0476:AEOTSD>2.0.CO;2
    [12] Knaff J A, Seseske S A, DeMaria M, et al. 2004. On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU [J]. Mon.thly Wea.ther Rev.iew, 132(10): 2503−2510. doi:10.1175/1520-0493(2004)132<2503:OTIOVW>2.0.CO;2
    [13] Knaff J A, Sampson C R, DeMaria M, et al. 2007. Statistical tropical cyclone wind radii prediction using climatology and persistence [J]. Wea. Forecasting, 22(4): 781−791. doi: 10.1175/WAF1026.1
    [14] Knaff J A, Longmore S P, Demaria R T, et al. 2015. Improved tropical-cyclone flight-level wind estimates using routine infrared satellite reconnaissance [J]. Journal of Applied Meteorology and Climatology, 54(2): 463−478. doi: 10.1175/JAMC-D-14-0112.1
    [15] Knaff J A, Slocum C J, Musgrave K D, et al. 2016. Using routinely available information to estimate tropical cyclone wind structure [J]. Mon. Wea. Rev., 144(4): 1233−1247. doi: 10.1175/MWR-D-15-0267.1
    [16] Langousis A, Veneziano D. 2009. Theoretical model of rainfall in tropical cyclones for the assessment of long‐term risk [J]. J. Geophys. Res.: Atmos., 114(D2): D02106. doi: 10.1029/2008JD010080
    [17] Lee C S, Cheung K K W, Fang W T, et al. 2010. Initial maintenance of tropical cyclone size in the western North Pacific [J]. Mon. Wea. Rev., 138(8): 3207−3223. doi: 10.1175/2010MWR3023.1
    [18] Liu K S, Chan C L. 2002. Synoptic flow patterns associated with small and large tropical cyclones over the western North Pacific [J]. Mon. Wea. Rev., 130(8): 2134−2142. doi:10.1175/1520-0493(2002)130<2134:SFPAWS>2.0.CO;2
    [19] Merrill R T. 1984. A comparison of large and small tropical cyclones [J]. Mon. Wea. Rev., 112(7): 1408−1418. doi:10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2
    [20] Miyamoto Y, Takemi T. 2013. A transition mechanism for the spontaneous axisymmetric intensification of tropical cyclones [J]. J. Atmos. Sci., 70(1): 112−129. doi: 10.1175/JAS-D-11-0285.1
    [21] Stern D P. 2010. The vertical structure of tangential winds in tropical cyclones: Observations, theory, and numerical simulations [D]. Ph. D. dissertation, University of Miami
    [22] 田伟, 吴立广, 刘青元, 等. 2016. NOAA/NESDIS多平台热带气旋风场资料在中国东海区域评估 [J]. 热带气象学报, 32(1): 63−72. doi: 10.16032/j.issn.1004-4965.2016.01.007

    Tian Wei, Wu Liguang, Liu Qingyuan, et al. 2016. Evaluation of tropical cyclone surface wind analysis in East China Sea with NOAA/NESDIS multiplatform [J]. Journal of Tropical Meteorology (in Chinese), 32(1): 63−72. doi: 10.16032/j.issn.1004-4965.2016.01.007
    [23] Weatherford C L, Gray W M. 1988a. Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology [J]. Mon. Wea. Rev., 116(5): 1032−1043. doi:10.1175/1520-0493(1988)116<1032:TSARBA>2.0.CO;2
    [24] Weatherford C L, Gray W M. 1988b. Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability [J]. Mon. Wea. Rev., 116(5): 1044−1056. doi:10.1175/1520-0493(1988)116<1044:TSARBA>2.0.CO;2
    [25] Wu L G, Tian W, Liu Q Y, et al. 2015. Implications of the observed relationship between tropical cyclone size and intensity over the western North Pacific [J]. J. Climate, 28(24): 9501−9506. doi: 10.1175/JCLI-D-15-0628.1
    [26] 向纯怡, 吴立广, 田伟, 等. 2016. 多平台热带气旋表面风场资料在台风结构分析中的应用 [J]. 气象, 42(11): 1315−1324. doi: 10.7519/j.issn.1000-0526.2016.11.003

    Xiang Chunyi, Wu Liguang, Tian Wei, et al. 2016. Applications of MTCSWA data to the characteristic analysis of tropical cyclone structure [J]. Meteorological Monthly (in Chinese), 42(11): 1315−1324. doi: 10.7519/j.issn.1000-0526.2016.11.003
    [27] Yuan J N, Wang D X, Wan Q L, et al. 2007. A 28-year climatological analysis of size parameters for northwestern pacific tropical cyclones [J]. Adv. Atmos. Sci., 24(1): 24−34. doi: 10.1007/s00376-007-0024-y
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  12
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-21
  • 录用日期:  2020-04-09
  • 网络出版日期:  2020-03-29
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回