高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同大气强迫作用下陆面模式CAS-LSM多年冻土活动层厚度模拟与不确定性研究

李锐超 谢瑾博 谢正辉

李锐超, 谢瑾博, 谢正辉. 2021. 不同大气强迫作用下陆面模式CAS-LSM多年冻土活动层厚度模拟与不确定性研究[J]. 气候与环境研究, 26(1): 31−44 doi: 10.3878/j.issn.1006-9585.2020.19144
引用本文: 李锐超, 谢瑾博, 谢正辉. 2021. 不同大气强迫作用下陆面模式CAS-LSM多年冻土活动层厚度模拟与不确定性研究[J]. 气候与环境研究, 26(1): 31−44 doi: 10.3878/j.issn.1006-9585.2020.19144
LI Ruichao, XIE Jinbo, XIE Zhenghui. 2021. Simulation and Uncertainty of Active Layer Thickness of Permafrost by Land Surface Model CAS-LSM under Different Atmospheric Forcing Data [J]. Climatic and Environmental Research (in Chinese), 26 (1): 31−44 doi: 10.3878/j.issn.1006-9585.2020.19144
Citation: LI Ruichao, XIE Jinbo, XIE Zhenghui. 2021. Simulation and Uncertainty of Active Layer Thickness of Permafrost by Land Surface Model CAS-LSM under Different Atmospheric Forcing Data [J]. Climatic and Environmental Research (in Chinese), 26 (1): 31−44 doi: 10.3878/j.issn.1006-9585.2020.19144

不同大气强迫作用下陆面模式CAS-LSM多年冻土活动层厚度模拟与不确定性研究

doi: 10.3878/j.issn.1006-9585.2020.19144
基金项目: 国家自然科学基金项目41830967,国家重点研发项目2018YFC1506602,中国科学院前沿科学重点研究项目QYZDY-SSW-DQC012
详细信息
    作者简介:

    李锐超,男,1989年出生,博士研究生,主要从事陆面过程研究。E-mail: liruichao@mail.iap.ac.cn

    通讯作者:

    谢瑾博,E-mail: xiejinbo@mail.iap.ac.cn

  • 中图分类号: P467

Simulation and Uncertainty of Active Layer Thickness of Permafrost by Land Surface Model CAS-LSM under Different Atmospheric Forcing Data

Funds: National Natural Science Foundation of China(Grant 41830967), the National Key Research and Development Program of China (Grant 2018YFC1506602), Key Research Program of Frontier Sciences, CAS (Grant QYZDY-SSW-DQC012)
  • 摘要: 冻土在气候系统中起重要作用,研究并揭示冻土时空变化对于增加陆气相互作用的理解具有重要意义。本研究利用包含土壤冻结融化界面动态变化的陆面过程模式CAS-LSM(Chinese Academy of Sciences Land Surface Model),采用0.9°(纬度)×1.25°(经度)分辨率,结合4种大气强迫数据(全球土壤湿度项目强迫数据集GSWP3、美国国家大气研究中心/美国国家环境预报中心强迫数据集CRU-NCEP、普林斯顿全球强迫数据集Princeton、全球变化以及水文观测项目强迫数据集WFDEI)针对1960~2009年进行全球模拟,研究不同大气强迫作用下多年冻土活动层厚度变化趋势及其不确定性。通过与活动层厚度观测数据比较,陆面过程模式CAS-LSM模拟的活动层厚度与观测值比较接近。结果表明:在1960~2009年期间,不同大气强迫作用下多年冻土活动层厚度基本呈现增加的趋势,基于强迫数据WFDEI模拟的活动层厚度增加趋势最大。不同大气强迫数据模拟的活动层厚度区域平均和变化趋势范围为1.1~1.25 m和0.27~0.51 cm/a,相对变化的不确定性范围为11.2%~23.5%。其中青藏高原地区、北美地区、欧亚大陆北部地区的活动层厚度区域平均和变化趋势范围分别为2.26~2.81 m、1.07~1.31 m、1.32~1.48 m和0.47~1.0 4 cm/a、0.29~0.48 cm/a、0.25~0.55 cm/a。通过对地表温度以及气温的变化趋势分析表明:大气强迫数据中气温的差异是造成这些差异的主要原因。
  • 图  1  1996~2010年(a)CRU-NCEP、(b)GSWP3、(c)Princeton、(d)WFDEI 4组大气强迫数据模拟的活动层厚度(蓝点)、土壤温度插值的活动层厚度(红点)与CALM观测数据验证

    Figure  1.  Simulated active layer thickness validation (blue point) using four atmosphere forcing data (a) CRU-NCEP (Climatic Research Unit-NCEP forcing data), (b) GSWP3 (Global Soil Wetness Project forcing dataset), (c) Princeton (Princeton meteorological forcing dataset), and (d) WFDEI (water and global change forcing data methodology applied to ERA-Interim data) and the soil temperatures interpolationed active layer thickness validation (red point) based on observations from CALM (Circumpolar Active Layer Monitoring) sites during 1996–2010

    图  2  (a)CRU-NCEP、(b)GSWP3、(c)Princeton、(d)WFDEI 4组大气强迫数据模拟的1960~2009年活动层厚度的空间分布

    Figure  2.  Simulated mean active layer thickness using four atmosphere forcing data (a) CRU-NCEP, (b) GSWP3, (c) Princeton, and (d) WFDEI during 1960–2009

    图  3  (a)CRU-NCEP、(b)GSWP3、(c)Princeton、(d)WFDEI 4组大气强迫数据模拟的1960~2009年活动层厚度变化趋势

    Figure  3.  Simulated active layer thickness trends (cm/a) using four atmosphere forcing data (a) CRU-NCEP, (b) GSWP3, (c) Princeton, and (d) WFDEI during 1960–2009

    图  4  (a)CRU-NCEP、(b)GSWP3、(c)Princeton、(d)WFDEI 4组大气强迫数据模拟的1960~2009年区域平均活动层厚度年时间序列。黑线:青藏高原地区(28°N~38°N,73°E~104°E),红线:北美地区(56°N~70°N,70°W~165°W),蓝线:欧亚大陆北部地区(54°N~72°N,72°E~178°E)

    Figure  4.  Simulated active layer thickness annual time series using four atmosphere forcing data (a) CRU-NCEP, (b) GSWP3, (c) Princeton, and (d) WFDEI during 1960–2009. Black line: Qinghai–Tibet plateau region (28°N–38°N, 73°E–104°E), red line: North America (56°N–70°N, 70°E–165°E), blue line: north of Eurasia (54°N–72°N, 72°E–178°E)

    图  5  (a)CRU-NCEP、(b)GSWP3、(c)Princeton、(d)WFDEI 4组大气强迫数据模拟的1960~2009年地表温度变化趋势

    Figure  5.  Simulated ground temperature trends (℃/a) using four atmosphere forcing data (a) CRU-NCEP, (b) GSWP3, (c) Princeton, and (d) WFDEI during 1960–2009

    图  6  (a)CRU-NCEP、(b)GSWP3、(c)Princeton、(d)WFDEI 4组大气强迫数据模拟的1960~2009年2 m气温变化趋势

    Figure  6.  Simulated 2-m air temperature trends (℃/a) using four atmosphere forcing data (a) CRU-NCEP, (b) GSWP3, (c) Princeton, and (d) WFDEI during 1960–2009

    图  7  (a)CRU-NCEP、(b)GSWP3、(c)Princeton、(d)WFDEI 4组大气强迫数据模拟的1960~2009年多年冻土区2 m气温(红线)与活动层厚度(蓝线)年际变化趋势

    Figure  7.  Simulated interannual trends of 2-m air temperature (red line) and active layer thickness (blue line) using four atmosphere forcing data (a) CRU-NCEP, (b) GSWP3, (c) Princeton, and (d) WFDEI during 1960–2009

    8  (a)CRU-NCEP、(b)GSWP3、(c)Princeton、(d)WFDEI 4组大气强迫数据模拟的1960~2009年多年冻土区2 m气温与活动层厚度相关系数的空间分布

    8.  Spatial distribution of correlation coefficients between simulated 2-m air temperature and simulated active layer thickness using four atmosphere forcing data (a) CRU-NCEP, (b) GSWP3, (c) Princeton, and (d) WFDEI during 1960–2009

    图  9  多年冻土区活动层厚度在不同强迫下相对变化标准差的空间分布

    Figure  9.  Spatial distribution of relative variation standard deviation of active layer thickness in permafrost under different forces data

    表  1  1960~2009年利用4组大气强迫数据模拟的活动层厚度区域平均值及其变化趋势

    Table  1.   Simulated regional average active layer thickness and its trends from 1960 to 2009 using four atmosphere forcing data

    活动层厚度区域平均/m活动层厚度区域变化趋势/cm a−1
    CRU-NCEPGSWP3PrincetonWFDEI4组平均值CRU-NCEPGSWP3PrincetonWFDEI4组平均值
    多年冻土区1.251.041.201.101.150.300.2950.270.500.34
    青藏高原地区2.262.382.672.812.530.470.470.251.040.56
    北美地区1.311.071.191.061.160.300.310.290.480.35
    欧亚大陆北部地区1.411.321.481.321.380.340.330.250.550.37
    下载: 导出CSV
  • [1] Brown J, Hinkel K M, Nelson F E. 2000. The circumpolar active layer monitoring (CALM) program: Research designs and initial results [J]. Polar Geography, 24(3): 166−258. doi: 10.1080/10889370009377698
    [2] Delisle G. 2007. Near-surface permafrost degradation: How severe during the 21st century? [J]. Geophys. Res. Lett., 34(9): L09503. doi: 10.1029/2007GL029323
    [3] Frauenfeld O W, Zhang T J, Barry R G, et al. 2004. Interdecadal changes in seasonal freeze and thaw depths in Russia [J]. J. Geophys. Res. Atmos., 109(D5): D05101. doi: 10.1029/2003JD004245
    [4] Gao J Q, Xie Z H, Wang A W, et al. 2016. Numerical simulation based on two-directional freeze and thaw algorithm for thermal diffusion model [J]. Appl. Math. Mech., 37(11): 1467−1478. doi: 10.1007/s10483-016-2106-8
    [5] Gao J Q, Xie Z H, Wang A W, et al. 2019. A new frozen soil parameterization including frost and thaw fronts in the Community Land Model [J]. J. Adv. Mod. Earth Syst., 11(3): 659−679. doi: 10.1029/2018MS001399
    [6] Guo D L, Wang H J, Li D. 2012. A projection of permafrost degradation on the Tibetan Plateau during the 21st century [J]. J. Geophys. Res. Atmos., 117(D5): D05106. doi: 10.1029/2011JD016545
    [7] Guo D L, Wang H J, Wang A H. 2017. Sensitivity of historical simulation of the permafrost to different atmospheric forcing data sets from 1979 to 2009 [J]. J. Geophys. Res. Atmos., 122(22): 12269−12284. doi: 10.1002/2017JD027477
    [8] Haddeland I, Clark D B, Franssen W, et al. 2011. Multimodel estimate of the global terrestrial water balance: Setup and first results [J]. J. Hydrometeorol., 12(5): 869−884. doi: 10.1175/2011JHM1324.1
    [9] Harris C, Vonder M D, Isaksen K, et al. 2003. Warming permafrost in European mountains [J]. Glob. Planet. Change, 39(3-4): 215−225. doi: 10.1016/j.gloplacha.2003.04.001
    [10] Jumikis A R. 1978. Thermal geotechnics: Jumikis, A R New Brunswick, N J: Rutgers Univ Press, 1977, 375P [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15(4): 71. doi: 10.1016/0148-9062(78)91232-9
    [11] Kim H. 2017. Global soil wetness project phase 3 atmospheric boundary conditions (Experiment 1) [Z]. Data Integration and Analysis System (DIAS). doi: 10.20783/DIAS.501
    [12] Koven C D, Riley W J, Stern A. 2013. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth system models [J]. J. Climate, 26(6): 1877−1900. doi: 10.1175/JCLI-D-12-00228.1
    [13] Lawrence D M, Slater A G, Romanovsky V E, et al. 2008. Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter [J]. J. Geophys. Res. Earth Surf., 113(F2): F02011. doi: 10.1029/2007JF000883
    [14] Lawrence D M, Slater A G, Swenson S C. 2012. Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4 [J]. J. Climate, 25(7): 2207−2225. doi: 10.1175/JCLI-D-11-00334.1
    [15] 李元寿, 王根绪, 赵林, 等. 2010. 青藏高原多年冻土活动层土壤水分对高寒草甸覆盖变化的响应 [J]. 冰川冻土, 32(1): 157−165.

    Li Yuanshou, Wang Genxu, Zhao Lin, et al. 2010. Response of soil moisture in the permafrost active layer to the change of alpine meadow coverage on the Tibetan Plateau [J]. Journal of Glaciology and Geocryology (in Chinese), 32(1): 157−165.
    [16] Liu S, Xie Z H, Zeng Y J, et al. 2019. Effects of anthropogenic nitrogen discharge on dissolved inorganic nitrogen transport in global rivers [J]. Glob. Change Biol., 25(4): 1493−1513. doi: 10.1111/gcb.14570
    [17] Muller S W. 1947. Permafrost of Permanently Frozen Ground and Related Engineering Problems [M]. Ann Arbor: J. W. Edwards.
    [18] Nelson F E, Shiklomanov N I, Hinkel K M, et al. 2004. The circumpolar active layer monitoring (CALM) workshop and the CALM II program [J]. Polar Geography, 28(4): 253−266. doi: 10.1080/789610205
    [19] Oleson K, Lawrence D M, Bonan G B, et al. 2013. Technical description of version 4.5 of the Community Land Model (CLM), NCAR Tech [R]. No. NCAR/TN-503+STR. doi: 10.5065/D6RR1W7M
    [20] Schuur E A G, McGuire A D, Schädel C, et al. 2015. Climate change and the permafrost carbon feedback [J]. Nature, 520(7546): 171−179. doi: 10.1038/nature14338
    [21] Sheffield J, Goteti G, Wood E F. 2006. Development of a 50-year high–resolution global dataset of meteorological forcings for land surface modeling [J]. J. Climate, 19(13): 3088−3111. doi: 10.1175/JCLI3790.1
    [22] Van den Hurk B, Kim H, Krinner G, et al. 2016. LS3MIP (v1.0) contribution to CMIP6: The land surface, snow and soil moisture model intercomparison project—aims, setup and expected outcome [J]. Geosci. Model Dev., 9(8): 2809−2832. doi: 10.5194/gmd-9-2809-2016
    [23] Viovy N, Ciais P. 2009. A combined dataset for ecosystem modeling [EB/OL]. http://esgf.extracea.fr/thredds/catalog/store/p529viov/cruncep/catalog.html, last access: 1 August 2016.
    [24] Weedon G P, Balsamo G, Bellouin N, et al. 2014. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data [J]. Water Resour. Res., 50(9): 7505−7514. doi: 10.1002/2014WR015638
    [25] Woo M K, Arain M A, Mollinga M, et al. 2004. A two‐directional freeze and thaw algorithm for hydrologic and land surface modelling [J]. Geophys. Res. Lett., 31(12): L12501. doi: 10.1029/2004GL019475
    [26] Wu Q B, Zhang T J. 2010. Changes in active layer thickness over the Qinghai–Tibetan Plateau from 1995 to 2007 [J]. J. Geophys. Res., 115(D9): D09107. doi: 10.1029/2009jd012974
    [27] Xie Z H, Liu S, Zeng Y J, et al. 2018. A high-resolution land model with groundwater lateral flow, water use, and soil freeze–thaw front dynamics and its applications in an endorheic basin [J]. J. Geophys. Res. Atmos., 123(14): 7204−7222. doi: 10.1029/2018JD028369
    [28] 徐晓明, 吴青柏, 张中琼. 2017. 青藏高原多年冻土活动层厚度对气候变化的响应 [J]. 冰川冻土, 39(1): 1−8. doi: 10.7522/j.issn.1000-0240.2017.0001

    Xu Xiaoming, Wu Qingbai, Zhang Zhongqiong. 2017. Responses of active layer thickness on the Qinghai–Tibet Plateau to climate change [J]. Journal of Glaciology and Geocryology (in Chinese), 39(1): 1−8. doi: 10.7522/j.issn.1000-0240.2017.0001
    [29] Yang M X, Nelson F E, Shiklomanov N I, et al. 2010. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research [J]. Earth-Sci. Rev., 103(1-2): 31−44. doi: 10.1016/j.earscirev.2010.07.002
    [30] Zeng Y J, Xie Z H, Yu Y, et al. 2016a. Effects of anthropogenic water regulation and groundwater lateral flow on land processes [J]. J. Adv. Mod. Earth Syst., 8(3): 1106−1131. doi: 10.1002/2016ms000646
    [31] Zeng Y J, Xie Z H, Yu Y, et al. 2016b. Ecohydrological effects of stream–aquifer water interaction: A case study of the Heihe River basin, northwestern China [J]. Hydrol. Earth Syst. Sci., 20(6): 2333−2352. doi: 10.5194/hess-20-2333-2016
    [32] Zeng Y J, Xie Z H, Liu S. 2017. Seasonal effects of irrigation on land–atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin [J]. Earth Syst. Dyn., 8(1): 113−127. doi: 10.5194/esd-8-113-2017
    [33] Zhang T, Barry R G, Knowles K, et al. 1999. Statistics and characteristics of permafrost and ground–ice distribution in the Northern Hemisphere [J]. Polar Geography, 23(2): 132−154. doi: 10.1080/10889379909377670
    [34] 张国胜, 李林, 汪青春, 等. 2007. 青海高原冻土退化驱动因素的定量辨识 [J]. 地理科学, 27(3): 337−341. doi: 10.3969/j.issn.1000-0690.2007.03.008

    Zhang Guosheng, Li Lin, Wang Qingchun, et al. 2007. Quantitative identification of driving factor of frozen ground degeneration in Qinghai Plateau [J]. Scientia Geographica Sinica (in Chinese), 27(3): 337−341. doi: 10.3969/j.issn.1000-0690.2007.03.008
    [35] 张中琼, 吴青柏. 2012. 气候变化情景下青藏高原多年冻土活动层厚度变化预测 [J]. 冰川冻土, 34(3): 505−511.

    Zhang Zhongqiong, Wu Qingbai. 2012. Predicting changes of active layer thickness on the Qinghai–Tibet Plateau as climate warming [J]. Journal of Glaciology and Geocryology (in Chinese), 34(3): 505−511.
    [36] Zhao L, Ping C L, Yang D Q, et al. 2004. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai–Xizang (Tibetan) Plateau, China [J]. Glob. Planet. Change, 43(1-2): 19−31. doi: 10.1016/j.gloplacha.2004.02.003
    [37] Zou J, Xie Z H, Yu Y, et al. 2014. Climatic responses to anthropogenic groundwater exploitation: A case study of the Haihe River basin, northern China [J]. Climate Dyn., 42(7-8): 2125−2145. doi: 10.1007/s00382-013-1995-2
    [38] Zou J, Xie Z H, Zhan C S, et al. 2015. Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River basin, northern China [J]. J. Hydrol., 524: 625−641. doi: 10.1016/j.jhydrol.2015.03.026
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  3
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-06
  • 网络出版日期:  2020-12-08
  • 刊出日期:  2021-01-28

目录

    /

    返回文章
    返回