高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关中盆地近地面风场和大气输送特征分析

胡洵 蔡旭晖 宋宇 康凌

胡洵, 蔡旭晖, 宋宇, 等. 2020. 关中盆地近地面风场和大气输送特征分析[J]. 气候与环境研究, 25(6): 637−648 doi: 10.3878/j.issn.1006-9585.2020.20019
引用本文: 胡洵, 蔡旭晖, 宋宇, 等. 2020. 关中盆地近地面风场和大气输送特征分析[J]. 气候与环境研究, 25(6): 637−648 doi: 10.3878/j.issn.1006-9585.2020.20019
HU Xun, CAI Xuhui, SONG Yu, et al. 2020. Diagnostic Analysis of Wind Fields and Atmospheric Transport Pathways in the Guanzhong Basin [J]. Climatic and Environmental Research (in Chinese), 25 (6): 637−648 doi: 10.3878/j.issn.1006-9585.2020.20019
Citation: HU Xun, CAI Xuhui, SONG Yu, et al. 2020. Diagnostic Analysis of Wind Fields and Atmospheric Transport Pathways in the Guanzhong Basin [J]. Climatic and Environmental Research (in Chinese), 25 (6): 637−648 doi: 10.3878/j.issn.1006-9585.2020.20019

关中盆地近地面风场和大气输送特征分析

doi: 10.3878/j.issn.1006-9585.2020.20019
基金项目: 国家重点研发计划2018YFC0213204、2017YFC0209904,大气重污染成因与治理攻关项目DQGG0106-01
详细信息
    作者简介:

    胡洵,男,1998年出生,博士研究生,从事污染气象研究。E-mail: huxun@pku.edu.cn

    通讯作者:

    蔡旭晖,E-mail: xhcai@pku.edu.cn

  • 中图分类号: P404

Diagnostic Analysis of Wind Fields and Atmospheric Transport Pathways in the Guanzhong Basin

Funds: National Key Research and Development Project (Grants 2018YFC0213204 and 2017YFC0209904), Key Project of Heavy Air Pollution Mechanism and Control (Grant DQGG0106-01)
  • 摘要: 利用2017年151个地面气象站的逐时观测数据和相关高空资料分析关中盆地近地面风场与输送特征。首先分析盆地内代表性站点的风速和风向观测事实,然后用CALMET风场诊断模式和轨迹计算模式获取当地逐小时风场和每日逐小时传输轨迹,分析风场类型。结果表明:关中盆地内日平均风速约1~3 m s−1,夏季风速高、秋冬季低;盆地中央的主导风向以沿地形走向的东北风和西南风为主,盆地四周测站的主导风向表现出顺着地形向盆地中央汇流的趋势。各站主导风向的季节变化不大。盆地内风场分为系统控制型、弱天气背景型和局地环流型3类,全年出现日数比例分别占8%、17.3%和74.7%。以山谷风日夜循环为特征的局地环流型风场最多。以西安城区为源点的大气输送轨迹显示,系统控制型风场以偏东北方向的输送为主,弱天气背景型和局地环流型风场的轨迹输送都大致以偏东北和偏西(以及偏西南)沿盆地走向以及偏东南朝向秦岭山地这三个方向为主。局地环流型的轨迹影响范围小,集中于盆地中央和南侧山地之间,表明这是一种不利于污染扩散的风场类型。
  • 图  1  模式区域和地形、气象站点,模式区域中心经纬度为(34.28° N,108.95°E)。十字、星形和菱形符号分别为气象基准站、自动站和NCEP数据格点。彩色阴影代表海拔高度(下同)

    Figure  1.  Model domain and terrain of Guanzhong Basin with meteorology stations. The coordinates of the center of the domain are (34.28°N, 108.95°E). Cross, pentagram, and diamond symbols denote benchmark climate stations, automatic stations, and NCEP grid points, respectively. The color shadings represents the altitude (the same below)

    图  2  5个代表站分别在(a)春季、(b)夏季、(c)秋季和(d)冬季的风玫瑰图。灰色部分为风速,风玫瑰图的圆圈范围代表风向频率是10%

    Figure  2.  Mean wind roses of five representative weather stations in (a) spring, (b) summer, (c) autumn, and (d) winter. The gray parts represent wind speeds and the circle of the wind roses indicates the wind direction frequency of 10%

    图  3  典型系统控制型风场与轨迹个例,分别为2017年(a)1月11日13:00和(c)6月24日13:00的风场以及2017年(b)1月11日和(d)6月24日从00:00、01:00、02:00、……、24:00出发的轨迹

    Figure  3.  Typical examples of systematic wind field at (a) 1300 LST on 11 Jan and (c) 1300 LST on 24 Jun 2017 and trajectories from each hour on (b) 11 Jan and (d) 24 Jun 2017

    图  4  典型弱天气背景型风场个例,分别为2017年6月13日(a)01:00、(b)07:00、(b)13:00和(d)19:00的风场

    Figure  4.  Typical example of feeblish systematic wind field at (a) 0100 LST, (b) 0700 LST, (c) 1300 LST, and (d) 1900 LST on 13 Jun 2017

    图  5  典型局地环流型风场个例,分别为2017年2月4日(a)01:00、(b)07:00、(c)13:00和(d)19:00的风场

    Figure  5.  Typical example of local atmospheric circulation at (a) 0100 LST, (b) 0700 LST, (c) 1300 LST, and (d) 1900 LST on 4 Feb 2017

    图  6  系统控制型风场在(a)春季、(b)夏季、(c)秋季和(d)冬季的输送轨迹

    Figure  6.  Atmospheric transport pathways of systemic wind field in (a) spring, (b) summer, (c) autumn, and (d) winter

    图  7  弱天气背景型风场在(a)春季、(b)夏季、(c)秋季和(d)冬季的输送轨迹

    Figure  7.  Atmospheric transport pathways of feeblish systemic wind field in (a) spring, (b) summer, (c) autumn, and (d) winter

    图  8  局地环流型风场在(a)春季、(b)夏季、(c)秋季和(d)冬季的输送轨迹

    Figure  8.  Atmospheric transport pathways of local atmospheric circulation in (a) spring, (b) summer, (c) autumn, and (d) winter

    表  1  关中地区2017年各月份不同风场类型日期统计

    Table  1.   Statistical data of three types of atmospheric flows in the Guangzhong Basin in 2017

    系统控制型弱天气背景型局地环流型
    月份日期天数日期天数日期天数
    16,10,1137,9,12,25~26,28~2971~5,8,13~24,27,30,3121
    21915,7~8,20,2851~4,6,9~18,21~2722
    31,4,16,21~25,3092~3,5~15,17~2017
    416~1728,12,19,2041~7,9~11,13~15,18,21~3024
    57,9~11,15~16,24~2691~3,8,21~2264~6,12~14,17~20,23,27~3116
    69,24 23~4,6,11~1361~2,5,7~8,10,14~23,25~3022
    77~825~6,16~17,24~25,3171~4,9~15,18~23,26~3022
    88,21~22,2647,16~17,23,2751~6,9~15,18~20,24~25,28~3122
    92,5,18,26~2751,3~4,12~17,19~25,28~3019
    1081911~7、10~3129
    118,20,22,2449,21,2531~7,10~19,23,26~3023
    1217~1931~16,20~2825
    下载: 导出CSV

    表  2  关中地区2017年各季不同风场类型天数统计

    Table  2.   Seasonal appearance of three types of atmospheric flows in the Guangzhong Basin in 2017

    各季不同风场类型天数
    类型春季夏季秋季冬季总计
    系统控制1185428 (8.0%)
    弱天气背景151891961 (17.3%)
    局地环流57667169263(74.7%)
    注:全年有13天数据缺测,括号内为不同风场类型天数在全年的占比。
    下载: 导出CSV
  • [1] Bei N F, Li G H, Huang R J, et al. 2016. Typical synoptic situations and their impacts on the wintertime air pollution in the Guanzhong Basin, China [J]. Atmos. Chem. Phys., 16(11): 7373−7387. doi: 10.5194/acp-16-7373-2016
    [2] Bei N F, Zhao L N, Xiao B, et al. 2017. Impacts of local circulations on the wintertime air pollution in the Guanzhong Basin, China [J]. Sci. Total Environ., 592: 373−390. doi: 10.1016/j.scitotenv.2017.02.151
    [3] Chow F K, De Wekker S F J, Snyder B J. 2013. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges [M]. Dordrecht: Springer, 750pp. doi: 10.1007/978-94-007-4098-3
    [4] Clements W E, Archuleta J A, Gudiksen P H. 1989. Experimental design of the 1984 ASCOT field study [J]. J. Appl. Meteor., 28(6): 405−413. doi:10.1175/1520-0450(1989)028<0405:EDOTAF>2.0.CO;2
    [5] Dickerson M H, Gudiksen P H. 1983. Atmospheric studies in complex terrain, technical progress report FY-1979 through FY-1983 [R]. Rep. UCID-19851.
    [6] Dorninger M, Whiteman C D, Bica B, et al. 2011. Meteorological events affecting cold-air pools in a small basin [J]. J. Appl. Meteor. Climatol., 50(11): 2223−2234. doi: 10.1175/2011JAMC2681.1
    [7] Draxler R R, Hess G D. 1998. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition [J]. Aust. Meteor. Mag., 47: 295−308.
    [8] 何启超, 蔡旭晖, 宋宇, 等. 2013. 珠江三角洲区域大气扩散和输送特征诊断分析 [J]. 北京大学学报(自然科学版), 49(6): 945−954. doi: 10.13209/j.0479-8023.2013.126

    He Qichao, Cai Xuhui, Song Yu, et al. 2013. Diagnostic analysis of atmospheric transport and diffusion characteristics over the Pearl River Delta [J]. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 49(6): 945−954. doi: 10.13209/j.0479-8023.2013.126
    [9] 胡琳, 王琦, 张文静, 等. 2016. 关中地区低能见度事件变化特征分析 [J]. 干旱区地理, 39(1): 41−46. doi: 10.13826/j.cnki.cn65-1103/x.2016.01.005

    Hu Lin, Wang Qi, Zhang Wenjing, et al. 2016. Variation of low visibility events in Guanzhong of Shaanxi [J]. Arid Land Geography (in Chinese), 39(1): 41−46. doi: 10.13826/j.cnki.cn65-1103/x.2016.01.005
    [10] Jackson P L, Mayr G, Vosper S. 2013. Dynamically-driven Winds [M]//Chow F K, De Wekker S F J, Snyder B J. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges. Dordrecht: Springer, 121−218. doi: 10.1007/978-94-007-4098-3
    [11] Lareau N P, Crosman E, Whiteman C D, et al. 2013. The persistent cold-air pool study [J]. Bull. Amer. Meteor. Soc., 94(1): 51−63. doi: 10.1175/BAMS-D-11-00255.1
    [12] Lutgens F K, Tarbuck E J. 2013. The Atmosphere: An Introduction to Meteorology (12th ed.) [M]. Boston: Pearson, 27−33.
    [13] Pack H D. 1964. Meteorology of air pollution [J]. Science, 146(3648): 1119−1128. doi: 10.1126/science.146.3648.1119
    [14] Rotach M W, Zardi D. 2007. On the boundary-layer structure over highly complex terrain: Key findings from MAP [J]. Quart. J. Roy. Meteor. Soc., 133(625): 937−948. doi: 10.1002/qj.71
    [15] Scire J S, Robe F R, Fernau M E, et al. 2000. A User’s Guide for the CALMET Meteorological Model Vol. 37 [M]. Concord, USA: Earth Tech Inc., 1−15.
    [16] 陕西省地方志编纂委员会. 2001. 陕西省志•第6卷 气象志 [M]. 北京: 气象出版社, 492pp.

    Editorial Board of the History of Shaanxi Province. 2001. History of Shaanxi Province: Documentation of Meteorology (in Chinese) [M]. Beijing: China Meteorological Press, 492pp.
    [17] 孙根年, 吴晓娟, 周立花. 2006. 西安大气SO2/NOx污染时空变化的分析 [J]. 干旱区资源与环境, 20(5): 99−103. doi: 10.3969/j.issn.1003-7578.2006.05.020

    Sun Gennian, Wu Xiaojuan, Zhou Lihua. 2006. Analysis on temporal and spatial changes of SO2/NOx in Xi’an city during 1991−2002 [J]. Journal of Arid Land Resources and Environment (in Chinese), 20(5): 99−103. doi: 10.3969/j.issn.1003-7578.2006.05.020
    [18] 王珊, 修天阳, 孙扬, 等. 2014. 1960—2012年西安地区雾霾日数与气象因素变化规律分析 [J]. 环境科学学报, 34(1): 19−26. doi: 10.13671/j.hjkxxb.2014.01.021

    Wang Shan, Xiu Tianyang, Sun Yang, et al. 2014. The changes of mist and haze days and meteorological element during 1960−2012 in Xi’an [J]. Acta Scientiae Circumstantiae (in Chinese), 34(1): 19−26. doi: 10.13671/j.hjkxxb.2014.01.021
    [19] 王雯燕, 张颖梅, 曹红丽, 等. 2014a. 西安城区大雾气候特征分析 [J]. 陕西气象, (3): 20−22. doi: 10.3969/j.issn.1006-4354.2014.03.007

    Wang Wenyan, Zhang Yingmei, Cao Hongli, et al. 2014a. Analysis of heavy fog climate characteristics in Xi’an city [J]. Journal of Shaanxi Meteorology (in Chinese), (3): 20−22. doi: 10.3969/j.issn.1006-4354.2014.03.007
    [20] 王雯燕, 曹红丽, 张颖梅, 等. 2014b. 西安雾区垂直结构气象要素特征分析 [J]. 甘肃科学学报, 26(3): 32−34. doi: 10.3969/j.issn.1004-0366.2014.03.010

    Wang Wenyan, Cao Hongli, Zhang Yingmei, et al. 2014b. On characteristics of meteorological elements of Xi’an fog [J]. Journal of Gansu Sciences (in Chinese), 26(3): 32−34. doi: 10.3969/j.issn.1004-0366.2014.03.010
    [21] Whiteman C D. 2000. Mountain Meteorology: Fundamentals and Applications [M]. New York: Oxford University Press, 355pp.
    [22] 杨晓春, 杜萌萌, 吴其重, 等. 2016. 西安地区一次重污染过程的气象条件及轨迹分析 [J]. 干旱气象, 34(3): 547−552. doi: 10.11755/j.issn.1006-7639(2016)-03-0547

    Yang Xiaochun, Du Mengmeng, Wu Qizhong, et al. 2016. Analysis on meteorological condition and trajectory of a serious pollution weather in Xi’an of Shaanxi [J]. Journal of Arid Meteorology (in Chinese), 34(3): 547−552. doi: 10.11755/j.issn.1006-7639(2016)-03-0547
    [23] Yim S H L, Fung J C H, Lau A K H, et al. 2007. Developing a high-resolution wind map for a complex terrain with a coupled MM5/CALMET system [J]. J. Geophys. Res., 112(D5): D05106. doi: 10.1029/2006JD007752
    [24] 张侠, 程路, 王琦, 等. 2019. 基于WRF/CALMET的关中盆地中部典型风场模拟 [J]. 陕西气象, (4): 8−12. doi: 10.3969/j.issn.1006-4354.2019.04.003

    Zhang Xia, Cheng Lu, Wang Qi, et al. 2019. WRF / CALMET simulation of typical wind field in central Guanzhong Basin [J]. Journal of Shaanxi Meteorology (in Chinese), (4): 8−12. doi: 10.3969/j.issn.1006-4354.2019.04.003
    [25] 张振州, 蔡旭晖, 康凌, 等. 2014. 海南岛地区大气输送和扩散特征的数值模拟 [J]. 环境科学学报, 34(2): 281−289.

    Zhang Zhenzhou, Cai Xuhui, Kang Ling, et al. 2014. Numerical simulation of atmospheric transport and diffusion over Hainan Island [J]. Acta Scientiae Circumstantiae (in Chinese), 34(2): 281−289.
    [26] 周辉, 权文婷, 赵青兰. 2015. 陕西省关中地区霾天气时空分布特征 [J]. 陕西气象, (4): 21−23. doi: 10.3969/j.issn.1006-4354.2015.04.005

    Zhou Hui, Quan Wenting, Zhao Qinglan. 2015. Spatial and temporal distribution of haze weather in Guanzhong Region, Shaanxi Province [J]. Journal of Shaanxi Meteorology (in Chinese), (4): 21−23. doi: 10.3969/j.issn.1006-4354.2015.04.005
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  4
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-16
  • 网络出版日期:  2020-09-26
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回