高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

清江流域水热关系与东亚夏季风的联系

何源 李双林 胡超涌

何源, 李双林, 胡超涌. 2020. 清江流域水热关系与东亚夏季风的联系[J]. 气候与环境研究, 25(6): 677−694 doi: 10.3878/j.issn.1006-9585.2020.20035
引用本文: 何源, 李双林, 胡超涌. 2020. 清江流域水热关系与东亚夏季风的联系[J]. 气候与环境研究, 25(6): 677−694 doi: 10.3878/j.issn.1006-9585.2020.20035
HE Yuan, LI Shuanglin, HU Chaoyong. 2020. Correlation of Surface Air Temperature and Precipitation in the Qingjiang River basin and Its Connection with the East Asian Summer Monsoon [J]. Climatic and Environmental Research (in Chinese), 25 (6): 677−694 doi: 10.3878/j.issn.1006-9585.2020.20035
Citation: HE Yuan, LI Shuanglin, HU Chaoyong. 2020. Correlation of Surface Air Temperature and Precipitation in the Qingjiang River basin and Its Connection with the East Asian Summer Monsoon [J]. Climatic and Environmental Research (in Chinese), 25 (6): 677−694 doi: 10.3878/j.issn.1006-9585.2020.20035

清江流域水热关系与东亚夏季风的联系

doi: 10.3878/j.issn.1006-9585.2020.20035
基金项目: 国家自然科学基金重点项目41731177
详细信息
    作者简介:

    何源,男,1995年出生,硕士研究生,主要研究方向为气候变率。E-mail: hey@cug.edu.cn

    通讯作者:

    李双林,E-mail: shuanglin.li@mail.iap.ac.cn

  • 中图分类号: P461

Correlation of Surface Air Temperature and Precipitation in the Qingjiang River basin and Its Connection with the East Asian Summer Monsoon

Funds: National Natural Science Foundation of China (Grant 41731177)
  • 摘要: 降水(P)与气温(T)之间的关系,即水热关系(PTR),在夏季一定程度上可反映干旱—高温热浪(或洪涝多雨—凉夏)极端气候灾害事件的发生情况。三峡库区内的清江流域,存在发育良好的洞穴,其沉积物中碳氧同位素序列长,可一定程度代表降水或气温信息,存在构造长序列PTR指标的可能性。从现代器测与再分析记录出发,研究清江流域PTR的演变特征和成因,可为利用石笋碳氧同位素构造PTR代用指标提供一些物理基础和启发。本文利用清江流域6个站(巴东、建始、利川、恩施、五峰、宜昌)1960~2016年逐日气温与降水观测资料及NCEP耦合预报模式再分析(CFSR)、日本气象厅55年再分析(JRA55)和欧洲中期天气预报中心再分析(ERA-interim)等3套资料,分析了清江流域PTR季节性差异、年际与年代际变化及其与东亚夏季风的联系。结果表明:1)PTR有明显季节性差异,夏季为显著负相关,其他季节不明显;2)夏季PTR存在明显年代际变化,表现出20~25年准周期振荡特征。在过去的几十年间, 1965~1976年和1993~2011年期间水热相关不显著,而1977~1992年为显著负相关,即分别在1974年、1986年、1992年发生了年代际转折;3)夏季PTR年代际变化和东亚夏季风强度有一定的联系。在水热显著负相关时段(1977~1992年),夏季风偏弱;PTR不显著时段(1965~1976年和1993~2011年),夏季风偏强;4)机制上,夏季风减弱,南北方气流交汇位置靠南,清江流域水汽增加,上升运动增强,云量与降水增加,导致地表热通量减少,地面气温下降,PTR为显著负相关。夏季风增强时,南北气流交汇区北移,清江流域水汽减少,下沉运动增强,导致云量减少而地表热通量增加,使得气温上升,进一步使气温垂直递减率增加,降水效率对降水贡献为正,表明气温上升利于降水增加,同时云量/降水对气温的影响减弱,但并未消失,使得PTR不显著。5)太平洋年代际振荡(IPO/PDO)对清江流域夏季PTR起着一定的调制作用。
  • 图  1  1960~2016年清江流域(a)示意图(阴影代表海拔高度)及逐年夏季(b)降水距平和(c)气温距平演变

    Figure  1.  (a) Atlas of the Qingjiang Rriver basin (shadings are altitude) and the evolution of yearly summer (b) precipitation anomaly and (c) surface air temperature anomaly from 1960 to 2016

    图  2  1960~2016年清江流域(a)夏季PTR年代际序列演变、(b)夏季PTR年代际序列突变检验(滑动t检验)、(c)滑动窗口相关系数序列功率谱分析结果。虚线均代表通过95%显著性检验

    Figure  2.  (a) Decadal variation evolution of PTR, (b) running t-test result of PTR, (c) power spectral distribution of the PTR in the Qingjiang Rriver basin from 1960 to 2016. Dashed lines are significant at the 0.05 level

    图  3  1960~2016年清江流域夏季11年滑动平均气温(实线)和降水(直方)距平的演变

    Figure  3.  Evolution of 11-year moving average of summer air temperature (solid line) and precipitation (histogram) anomalies in the Qingjiang Rriver basin from 1960 to 2016

    图  4  再分析资料中1960~2016年清江流域夏季PTR年代际序列演变(虚线代表0.05显著水平阈值)

    Figure  4.  Decadal variations of the PTR of reanalysis data and observations in the Qingjiang area from 1960 to 2016 (gray dashed lines are the 0.05 significance levels)

    图  5  CRU资料中1960~2016年(a)中国气温与降水相关系数、(b)清江流域PTR年代际序列与各格点PTR年代际序列相关场;(c)、(d)同(a)、(b),但为JRA55资料。以±0.28为0.05显著性检验阈值,绿色方框表示清江流域

    Figure  5.  (a) Correlation coefficients of temperature and precipitation from 1960 to 2016 of China from CRU data and (b) correlation coefficients between decadal variation of PTR of each CRU data grid with PTR of the Qingjiang River; (c) and (d) same as (a) and (b), but for JRA55 data. With ±0.28 as 0.05 significance test threshold and the green squares indicate the Qingjiang River basin area

    图  6  (a)P1时段(1977~1992年)、(b)P2时段(1965~1976年和1993~2011年)SLP异常合成场及(c)两个时段差值场(P1-P2)(单位:hPa),虚线为负SLP,实线为正SLP;(d–f)同(a–c),但为850 hPa风异常场。阴影表示通过0.05显著性检验,红色方框表示清江流域

    Figure  6.  Composite of SLP anomaly (hPa) in (a) P1 (1977-1992) and (b) P2 (1965-1976 and 1993-2011) and (c) their difference (P1-P2), dotted lines and solid lines are negative SLP and positive SLP, respectively; (d–f) as in (a–c) but for the wind vector anomaly at the 850-hPa height. Shadings represent the 0.05 significance level and red square indicates the Qingjiang River basin area

    图  7  (a)500 hPa高度场两个时段差值场(P1-P2)(单位:dagpm);(b)同(a),但为200 hPa纬向风场(单位:m/s)。实线为正值,虚线为负值,打点表示通过0.05显著性检验

    Figure  7.  (a) Difference between P1 and P2 of 500-hPa geopotential height (gpdm); (b) as in (a) but for the zonal wind at 200 hPa (units: m/s). Dotted lines and solid lines are negative SLP and positive SLP, respectively; dottings represent the 0.05 significance level

    图  8  1960~2016年期间东亚夏季风指数(EASMI)演变(直方)及其11年滑动平均(虚线),白色柱状图EASMI大于0,代表夏季风偏强,灰色柱状图EASMI小于0,代表夏季风偏弱

    Figure  8.  The evolution (bar) of East Asian summer monsoon index (EASMI) through 1960–2016, along with its 11-year moving average (dashed line), white histogram EASMI is greater than 0, indicating strong summer monsoon, and the gray histogram EASMI is less than 0, indicating weak summer monsoon

    图  9  (a)P1时段(1977~1992年)、(b)P2时段(1965~1976年和1993~2011年)降水异常合成场(上排)及(c)两个时段差值场(P1-P2);(d−i)同(a−c),但为(d−f)OLR(中排)和(g−i)气温(下排)。黑色方框表示清江流域,打点表示通过0.05显著性检验

    Figure  9.  Composite of precipitation anomaly (upper) in (a) P1 (1977−1992) and (b) P2 (1965−1976 and 1993−2011) and (c) their difference (P1-P2); (d−i) as in (a−c), but (d−f) for the OLR anomaly (middle) and (d−f) for the temperature anomaly. The black square indicates the Qingjiang River basin area and dotting represents significance over the 0.05 level

    图  10  图9,但分别为总云量异常(上排)、高云量异常(中排)和低云量异常(下排)

    Figure  10.  Same as Fig. 9, but for the total cloudiness anomaly (upper), the high cloudiness anomaly (middle), and the lower cloudiness anomaly (lower)

    图  11  图6,但分别为潜热通量异常(上排)和感热通量异常(下排)

    Figure  11.  Same as Fig. 6, but for the latent heat flux anomaly (upper) and the sensible heat flux anomaly (lower)

    图  12  (a)降水异常分解各项年代际分量演变;(b)MCF差值场(P1-P2,打点代表通过95%显著性检验,黑框代表清江流域);(c)清江流域地区500~1000 hPa垂直温度分布年代际演变。打点代表通过0.05显著性检验,黑框代表清江流域

    Figure  12.  (a) Decadal variation of components of precipitation anomaly; (b) difference between P1 and P2 of MCF (dotting represents significance over the 95% level; black square indicates the Qingjiang River basin area); (c) decadal variation of vertical temperature distribution for 500–1000 hPa in the Qingjiang basin). Dottings represent the 0.05 significance level and black square indicates the Qingjiang River basin area

    图  13  (a)P1时段(1977~1992年)、(b)P2时段(1965~1976年和1993~2011年)海温异常合成场及(c)两个时段差值场(P1-P2),阴影表示通过95%显著性检验

    Figure  13.  Composite of SST anomaly in (a) P1 (1977−1992) and (b) P2 (1965−1976 and 1993−2011) and (c) their difference. Dotting represents significance over the 95% level

    表  1  1960~2016年清江流域不同季节和年平均PTR对比

    Table  1.   Comparison of different seasons and annual average Precipitation−surface air Temperature Relationship (PTR) in Qingjiang River basin from 1960 to 2016

    PTR系数
    冬季春季夏季秋季年平均
    宜昌站0.04−0.11−0.38*−0.36*−0.10
    五峰站0.09−0.02−0.26*−0.14−0.08
    巴东站0.33*−0.19−0.41*−0.32*−0.20
    建始站0.37*−0.08−0.42*−0.01−0.10
    利川站0.20−0.09−0.28*0.10−0.10
    恩施站0.33*0.01−0.44*0.08−0.01
    清江区域0.30*−0.01−0.48*−0.09−0.08
    注:*为通过95%显著性检验。
    下载: 导出CSV

    表  2  1960~2016年清江流域夏季降水、气温距平统计

    Table  2.   Summer precipitation, temperature anomaly statistics for the Qingjiang Rriver basin from 1960 to 2016

    降水偏多
    (偏少)
    气温偏高
    (偏低)
    降水、气温
    距平同号
    降水、气温
    距平异号
    年份23(34)19(38)2730
    百分率40.35%
    (59.65%)
    33.33%
    (66.67%)
    47.37%52.63%
    下载: 导出CSV
  • [1] Adler R F, Gu G J, Wang J J, et al. 2008. Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006) [J]. J. Geophys. Res., 113(D22): D22104. doi: 10.1029/2008JD010536
    [2] Asharaf S, Dobler A, Ahrens B. 2012. Soil moisture–precipitation feedback processes in the Indian summer monsoon season [J]. J. Hydrometeorol., 13(5): 1461−1474. doi: 10.1175/JHM-D-12-06.1
    [3] Beniston M. 2009. Decadal-scale changes in the tails of probability distribution functions of climate variables in Switzerland [J]. Int. J. Climatol., 29(10): 1362−1368. doi: 10.1002/joc.1793
    [4] Berg A, Lintner B R, Findell K, et al. 2015. Interannual coupling between summertime surface temperature and precipitation over land: Processes and implications for climate change [J]. J. Climate, 28(3): 1308−1328. doi: 10.1175/JCLI-D-14-00324.1
    [5] 蔡佳熙, 管兆勇. 2007. 我国南方地区夏季低温变化特征及其成因 [J]. 南京气象学院学报, 30(6): 799−806. doi: 10.3969/j.issn.1674-7097.2007.06.010

    Cai Jiaxi, Guan Zhaoyong. 2007. Characteristics of cold summer events in southern China and their relations with variations of Asian summer monsoon [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 30(6): 799−806. doi: 10.3969/j.issn.1674-7097.2007.06.010
    [6] 蔡佳熙, 管兆勇, 于田田. 2011. 长江流域夏季气温变化型及其成因Ⅱ: 年代际变化 [J]. 气象学报, 69(1): 112−124. doi: 10.11676/qxxb2011.010

    Cai Jiaxi, Guan Zhaoyong, Yu Tiantian. 2011. A classification of the summertime temperature patterns in the middle and lower reaches of the Yangtze River and their causes Ⅱ: Interdecadal variations [J]. Acta Meteor. Sinica (in Chinese), 69(1): 112−124. doi: 10.11676/qxxb2011.010
    [7] 曹丽娟, 张冬峰, 张勇, 等. 2010. 土地利用变化对长江流域气候及水文过程影响的敏感性研究 [J]. 大气科学, 34(4): 726−736. doi: 10.3878/j.issn.1006-9895.2010.04.06

    Cao Lijuan, Zhang Dongfeng, Zhang Yong, et al. 2010. Sensitivity research of the effects of land use change on climate and runoff over the Yangtze River basin [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(4): 726−736. doi: 10.3878/j.issn.1006-9895.2010.04.06
    [8] 陈洪滨, 范学花. 2010. 2009年极端天气和气候事件及其他相关事件的概要回顾 [J]. 气候与环境研究, 15(3): 322−336. doi: 10.3878/j.issn.1006-9585.2010.03.12

    Chen Hongbin, Fan Xuehua. 2010. Some extreme events of weather, climate and related phenomena in 2009 [J]. Climatic and Environmental Research (in Chinese), 15(3): 322−336. doi: 10.3878/j.issn.1006-9585.2010.03.12
    [9] 陈正洪, 任永建, 王凯. 2010. 湖北省2009年夏季极端高温事件及其影响评价 [J]. 华中师范大学学报(自然科学版), 44(2): 319−324.

    Chen Zhenghong, Ren Yongjian, Wang Kai. 2010. The assessment on the extreme high-temperature event and its influences in the summer of 2009 in Hubei Province [J]. Journal of Huazhong Normal University (Natural Sciences) (in Chinese), 44(2): 319−324.
    [10] 程乘, 朱益民, 丁黄兴, 等. 2017. 中国东部地区夏季降水和环流的年代际转型及其与PDO的联系 [J]. 气象科学, 37(4): 450−457. doi: 10.3969/2016jms.0023

    Cheng Cheng, Zhu Yimin, Ding Huangxing, et al. 2017. The interdecadal shift of summer precipitation and atmospheric circulation over East China and its relationship with PDO [J]. Journal of the Meteorological Sciences (in Chinese), 37(4): 450−457. doi: 10.3969/2016jms.0023
    [11] 崔曜鹏, 魏海宁, 张凯荣, 等. 2015. 1961—2000年中国降水与气温变化的关系分析 [J]. 现代农业科技, (5): 239−242. doi: 10.3969/j.issn.1007-5739.2015.05.148

    Cui Yaopeng, Wei Haining, Zhang Kairong, et al. 2015. Analysis on relationship between precipitation and temperature variation in China from 1961 to 2000 [J]. Modern Agricultural Science and Technology (in Chinese), (5): 239−242. doi: 10.3969/j.issn.1007-5739.2015.05.148
    [12] Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system [J]. Quart. J. Roy. Meteor. Soc., 137(656): 553−597. doi: 10.1002/qj.828
    [13] Déry S J, Wood E F. 2005. Observed twentieth century land surface air temperature and precipitation covariability [J]. Geophys. Res. Lett., 32(21): L21414. doi: 10.1029/2005GL024234
    [14] 邓振镛, 文小航, 黄涛, 等. 2009. 干旱与高温热浪的区别与联系 [J]. 高原气象, 28(3): 702−709.

    Deng Zhenyong, Wen Xiaohang, Huang Tao, et al. 2009. Relationship and difference between drought and high temperature heat waves [J]. Plateau Meteorology (in Chinese), 28(3): 702−709.
    [15] Ding Q H, Wang B. 2005. Circumglobal teleconnection in the Northern Hemisphere summer [J]. J. Climate, 18(17): 3483−3505. doi: 10.1175/JCLI3473.1
    [16] Du H B, Wu Z F, Jin Y H, et al. 2013. Quantitative relationships between precipitation and temperature over Northeast China, 1961–2010 [J]. Theor. Appl. Climatol., 113(3–4): 659−670. doi: 10.1007/s00704-012-0815-7
    [17] Fernández-Montes S, Gómez-Navarro J J, Rodrigo F S, et al. 2017. Covariability of seasonal temperature and precipitation over the Iberian Peninsula in high-resolution regional climate simulations (1001–2099) [J]. Global and Planetary Change, 151: 122−133. doi: 10.1016/j.gloplacha.2016.09.007
    [18] Fischer E M, Seneviratne S I, Vidale P L, et al. 2007. Soil moisture–atmosphere interactions during the 2003 European summer heat wave [J]. J. Climate, 20(20): 5081−5099. doi: 10.1175/JCLI4288.1
    [19] Folland C K, Renwick J A, Salinger M J, et al. 2002. Relative influences of the interdecadal pacific oscillation and ENSO on the South Pacific convergence zone [J]. Geophysical Research Letters, 29(13): 1643. doi: 10.1029/2001GL014201
    [20] Gao X J, Luo Y, Lin W T, et al. 2003. Simulation of effects of land use change on climate in China by a regional climate model [J]. Adv. Atmos. Sci., 20(4): 583−592. doi: 10.1007/BF02915501
    [21] Harris I, Jones P D, Osborn T J, et al. 2014. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset [J]. Int. J. Climatol., 34(3): 623−642. doi: 10.1002/joc.3711
    [22] Hartmann D L, Larson K. 2002. An important constraint on tropical cloud−climate feedback [J]. Geophys. Res. Lett., 29(20): 1951. doi: 10.1029/2002GL015835
    [23] Henley B J, Gergis J, Karoly D J, et al. 2015. A tripole index for the interdecadal Pacific Oscillation [J]. Climate Dyn., 45(11–12): 3077−3090. doi: 10.1007/s00382-015-2525-1
    [24] 洪国平, 王苗, 方思达. 2018. 近55年湖北省凉夏气候事件及其大气环流特征 [J]. 气象科技, 46(2): 352−360.

    Hong Guoping, Wang Miao, Fang Sida. 2018. Characteristics of cool summer events and atmospheric circulation in last 55 years over Hubei Province [J]. Meteorological Science and Technology (in Chinese), 46(2): 352−360.
    [25] Hu C Y, Huang J H, Fang N P, et al. 2005. Adsorbed silica in stalagmite carbonate and its relationship to past rainfall [J]. Geochimica et Cosmochimica Acta, 9(69): 2285−2292. doi: 10.1016/j.gca.2004.10.029
    [26] Hu C Y, Henderson G M, Huang J H, et al. 2008a. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records [J]. Earth and Planetary Science Letters, 266(3–4): 221−232. doi: 10.1016/j.jpgl.2007.10.015
    [27] Hu C Y, Henderson G M, Huang J H, et al. 2008b. Report of a three-year monitoring programme at Heshang Cave, Central China [J]. International Journal of Speleology, 37(3): 143−151. doi: 10.5038/1827-806X.37.3.1
    [28] Huang J, van den Dool H M. 1993. Monthly precipitation−temperature relations and temperature prediction over the United States [J]. J. Climate, 6(6): 1111−1132. doi:10.1175/1520-0442(1993)006<1111:MPTRAT>2.0.CO;2
    [29] Huang B Y, Thorne P W, Banzon V F, et al. 2017. Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons [J]. J. Climate, 30(20): 8179−8205. doi: 10.1175/JCLI-D-16-0836.1
    [30] Isaac G A, Stuart R A. 1992. Temperature–precipitation relationships for Canadian stations [J]. J. Climate, 5(8): 822−830. doi:0.1175/1520-0442(1992)005<0822:TRFCS>2.0.CO;2
    [31] Kobayashi S, Ota Y, Harada Y, et al. 2015. The JRA-55 reanalysis: General specifications and basic characteristics [J]. J. Meteor. Soc. Japan, 93(1): 5−48. doi: 10.2151/jmsj.2015-001
    [32] 寇雄伟, 李昀英, 方乐锌, 等. 2016. 东亚夏季风活动与不同类型云的相关性研究 [J]. 大气科学, 40(3): 463−475. doi: 10.3878/j.issn.1006-9895.1511.14293

    Kou Xiongwei, Li Yunying, Fang Lexin, et al. 2016. Relationships between East Asian summer monsoon activities and cloud types [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(3): 463−475. doi: 10.3878/j.issn.1006-9895.1511.14293
    [33] Kuang Z M, Hartmann D L. 2007. Testing the fixed anvil temperature hypothesis in a cloud-resolving model [J]. J. Climate, 20(10): 2051−2057. doi: 10.1175/JCLI4124.1
    [34] 李佩成, 郭曼, 王丽霞, 等. 2011. 近60年来中国大陆降水、气温动态及其相互关系的初步研究 [J]. 中国工程科学, 13(4): 29−35. doi: 10.3969/j.issn.1009-1742.2011.04.006

    Li Peicheng, Guo Man, Wang Lixia, et al. 2011. Research of dynamics and relationship of precipitation and temperature in the recent 60 years in China [J]. Engineering Sciences (in Chinese), 13(4): 29−35. doi: 10.3969/j.issn.1009-1742.2011.04.006
    [35] 李昀英, 寇雄伟, 孙国荣. 2019. 对比云和降水表征的东亚夏季风活动 [J]. 大气科学, 43(2): 339−349.

    Li Yunying, Kou Xiongwei, Sun Guorong. 2019. Comparison of the East Asian summer monsoon activities represented by clouds and precipitation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(2): 339−349.
    [36] 刘海文, 周天军, 朱玉祥, 等. 2012. 东亚夏季风自20世纪90年代初开始恢复增强 [J]. 科学通报, 57(9): 765−769. doi: 10.1007/sl1434-012-4991-8

    Liu Haiwen, Zhou Tianjun, Zhu Yuxiang, et al. 2012. The strengthening East Asia summer monsoon since the early 1990s [J]. Chinese Science Bulletin (in Chinese), 57(9): 765−769. doi: 10.1007/sl1434-012-4991-8
    [37] Madonna E, Wernli H, Joos H, et al. 2014. Warm conveyor belts in the ERA-interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution [J]. J. Climate, 27(1): 3−26. doi: 10.1175/JCLI-D-12-00720.1
    [38] Mishra V, Cherkauer K A, Niyogi D, et al. 2010. A regional scale assessment of land use/land cover and climatic changes on water and energy cycle in the upper Midwest United States [J]. Int. J. Climatol., 30(13): 2025−2044. doi: 10.1002/joc.2095
    [39] Power S, Casey T, Folland C, et al. 1999. Inter-decadal modulation of the impact of ENSO on Australia [J]. Climate Dyn., 15(5): 319−324. doi: 10.1007/s003820050284
    [40] 钱卓蕾, 娄小芬, 马洁华, 等. 2018. 2014年夏季浙江低温多雨的大尺度环流特征及与海温异常关系 [J]. 气候与环境研究, 23(2): 199−209. doi: 10.3878/j.issn.1006-9585.2017.17012

    Qian Zhuolei, Lou Xiaofen, Ma Jiehua, et al. 2018. Large-scale circulation characteristics corresponding to the cold and rainy summer of 2014 in Zhejiang Province and the relationship with SST anomalies [J]. Climatic and Environmental Research (in Chinese), 23(2): 199−209. doi: 10.3878/j.issn.1006-9585.2017.17012
    [41] Saha S, Moorthi S, Wu X R, et al. 2014. The NCEP climate forecast system version 2 [J]. J. Climate, 27(6): 2185−2208. doi: 10.1175/JCLI-D-12-00823.1
    [42] Schär C, Lüthi D, Beyerle U, et al. 1999. The soil−precipitation feedback: A process study with a regional climate model [J]. J. Climate, 12(3): 722−741. doi:10.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2
    [43] Trenberth K E, Shea D J. 2005. Relationships between precipitation and surface temperature [J]. Geophys. Res. Lett., 32(14): L14703. doi: 10.1029/2005GL022760
    [44] Wang H J. 2001. The weakening of the Asian monsoon circulation after the end of 1970’s [J]. Adv. Atmos. Sci., 18(3): 376−386. doi: 10.1007/BF02919316
    [45] 王云琦, 齐实, 孙阁, 等. 2011. 气候与土地利用变化对流域水资源的影响——以美国北卡罗莱纳州Trent流域为例 [J]. 水科学进展, 22(1): 51−58.

    Wang Yunqi, Qi Shi, Sun Ge, et al. 2011. Impacts of climate and land-use change on water resources in a watershed: A case study on the Trent River basin in North Carolina, USA [J]. Advances in Water Science (in Chinese), 22(1): 51−58.
    [46] Wei J F, Su H, Yang Z L. 2016. Impact of moisture flux convergence and soil moisture on precipitation: A case study for the southern United States with implications for the globe [J]. Climate Dynamics, 46(1–2): 467−481. doi: 10.1007/s00382-015-2593-2
    [47] Wu A M, Ni Y Q. 1997. The influence of Tibetan Plateau on the interannual variability of Asian Monsoon [J]. Adv. Atmos. Sci., 14(4): 491−504. doi: 10.1007/s00376-997-0067-0
    [48] Wu L Y. 2014. Changes in the covariability of surface air temperature and precipitation over East Asia associated with climate shift in the late 1970s [J]. Atmos. Oceanic Sci. Lett., 7(2): 92−97. doi:10.1080/ 16742834.2014.11447141
    [49] Wu R G, Chen J P, Wen Z P. 2013. Precipitation−surface temperature relationship in the IPCC CMIP5 models [J]. Adv. Atmos. Sci., 30(3): 766−778. doi: 10.1007/s00376-012-2130-8
    [50] 杨修群, 朱益民, 谢倩, 等. 2004. 太平洋年代际振荡的研究进展 [J]. 大气科学, 28(6): 979−992. doi: 10.3878/j.issn.1006-9895.2004.06.15

    Yang Xiuqun, Zhu Yimin, Xie Qian, et al. 2004. Advances in studies of pacific decadal oscillation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28(6): 979−992. doi: 10.3878/j.issn.1006-9895.2004.06.15
    [51] 张华, 谢冰, 刘煜, 等. 2017. 东亚地区云对地球辐射收支和降水变化的影响研究 [J]. 中国基础科学, 19(5): 18−22, 28. doi: 10.3969/j.issn.1009-2412.2017.05.004

    Zhang Hua, Xie Bing, Liu Yu, et al. 2017. Study on the influence of clouds on the earth radiation budget and precipitation changes in East Asia region [J]. China Basic Science (in Chinese), 19(5): 18−22, 28. doi: 10.3969/j.issn.1009-2412.2017.05.004
    [52] Zhang H B, Griffiths M L, Chiang J C H, et al. 2018. East Asian hydroclimate modulated by the position of the westerlies during Termination I [J]. Science, 362(6414): 580−583. doi: 10.1126/science.aat9393
    [53] Zhang H Y, Wen Z P, Wu R G, et al. 2017. Inter-decadal changes in the East Asian summer monsoon and associations with sea surface temperature anomaly in the South Indian Ocean [J]. Climate Dyn., 48(3–4): 1125−1139. doi: 10.1007/s00382-016-3131-6
    [54] 张志薇, 王式功, 尚可政, 等. 2011. 华中地区近50年高温事件及大气环流成因分析 [J]. 兰州大学学报(自然科学版), 7(2): 50−55.

    Zhang Zhiwei, Wang Shigong, Shang Kezheng, et al. 2011. Analysis of the atmospheric circulation anomalies of large-scale extreme high temperature events over central China in recent 50 years [J]. Journal of Lanzhou University (Natural Sciences) (in Chinese), 7(2): 50−55.
    [55] Zhao W N, Khalil M A K. 1993. The relationship between precipitation and temperature over the contiguous United States [J]. J. Climate, 6(6): 1232−1236. doi:10.1175/1520-0442(1993)006<1232:TRBPAT>2.0.CO;2
    [56] Zhou C L, Wang K C. 2017. Quantifying the sensitivity of precipitation to the long-term warming trend and interannual–decadal variation of surface air temperature over China [J]. J. Climate, 30(10): 3687−3703. doi: 10.1175/JCLI-D-16-0515.1
    [57] 字冉, 管兆勇, 李明刚. 2015. 东亚上空急流位置经向变化及其与东亚夏季气候异常的联系 [J]. 大气科学学报, 38(1): 55−65. doi: 10.13878/j.cnki.dqkxxb.20140106001

    Zi Ran, Guan Zhaoyong, Li Minggang. 2015. Meridional shifting of upper-level East Asian jet stream and its impacts on East Asian climate variations in boreal summer [J]. Transactions of Atmospheric Sciences (in Chinese), 38(1): 55−65. doi: 10.13878/j.cnki.dqkxxb.20140106001
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  7
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-28
  • 录用日期:  2020-05-29
  • 网络出版日期:  2020-05-22
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回