Evaluation on CMIP6 Global Climate Model Simulation of the Annual Mean Daily Maximum and Minimum Air Temperature in China
-
摘要: 选取CMIP6历史模拟试验26个模式数据,以CN05.1数据作为观测资料,对1961~2014年中国年平均最高气温和最低气温变化模拟能力进行评估。结果表明:1961~2014年,中国年均最高气温和最低气温均存在上升的趋势。最高气温增长速率为2.15°C/100 a;最低气温增长速率为3.92°C/100 a,约为最高气温增长速率的两倍。CMIP6模式都能模拟出这种长时间尺度的变化趋势,但不同模式模拟能力存在一定差异,模式间离散度达到0.38°C/100 a(最高气温)和0.41°C/100 a(最低气温)。模式中BCC-ESM1和EC-Earth3模式对这两种趋势的模拟效果最好。CMIP6模式可以较好地模拟出中国范围内的最高气温和最低气温空间分布特征。中国范围内,大部分模式模拟结果与观测呈正相关的格点所占比例分别为82%(最高气温)和97%(最低气温),模拟结果具有明显的地域性。对于气候平均态,CMIP6模式可以较好地模拟出最高最低气温空间分布特征,对于整个中国东部地区,最高最低气温模拟结果的模式间标准差均在3°C以内,一致性较高,在西部地区差异较大,青藏高原地区达到6°C以上。GISS-E2-1-G和MRI-ESM2-0可以很好地模拟出1961~2014年中国最高气温和最低气温经验正交分解(Empirical Orthogonal Function, EOF)主要模态及其时间演变。总体来说,CMIP6模式对中国年均最高气温和最低气温的气候态空间分布以及变化趋势等方面,具备较好的模拟能力。Abstract: Simulations for China’s annual average maximum and minimum surface air temperature by CMIP6 models were evaluated, referring to observations from CN05.1 data. Results show that the annual average maximum and minimum surface air temperature in China from 1961 to 2014 had increasing trends. The maximum surface air temperature increased at a rate of 2.15°C/100 a. The growth rate of the minimum air temperature was 3.92°C/100 a, which was about twice the growth rate of the maximum air temperature. CMIP6 models can simulate trends over long time scales, but there were large differences in the simulation ability of different models. The dispersion between models reached 0.38°C/100 a (maximum air temperature) and 0.41°C/100 a (minimum air temperature). BCC-ESM1 and EC-Earth3 had the best performance in simulating the trends of the maximum and minimum air temperature, respectively. CMIP6 models can well simulate the spatial distribution of the climatological maximum and minimum air temperature in China. Proportions of grid points where the most of the model simulations correlated positively with observations were 82% (maximum air temperature) and 97% (minimum air temperature) in China. Simulation results of the maximum and minimum air temperature in the whole of eastern China had obvious geographical characteristics with a standard deviation within 3°C, showing a high consistency. The variation was significant in the western region and reached more than 6°C in the Tibetan Plateau. GISS-E2-1-G and MRI-ESM2-0 can well simulate the main EOF (empirical orthogonal function) modes and principal components of the maximum and minimum air temperature in China during 1961–2014. In summary, CMIP6 models can well simulate the spatial distribution of the climatological maximum and minimum air temperature and interannual trends of the maximum and minimum air temperature in China.
-
图 1 观测结果(红点)及CMIP6多模式模拟(绿点:多模式集合平均,白点:模式模拟结果的中位数点)的中国最高最低气温变化线性趋势分布(图形与中轴线的距离越大表示模式模拟结果为该值的数量多)
Figure 1. Linear trend distributions of China-wide average maximum and minimum air temperature from observations (red) and CMIP6 models (green: Multi-model ensemble, white: Median point of simulations) (larger distance between the graph and the central axis indicates a greater number of model simulations that result in that value)
图 3 CMIP6模式模拟1961~2014中国年均最高气温评估结果:(a)NorESM2-MM模式与观测相关性;(c)KIOST-ESM模式与观测相关性;(e)多模式集合模拟结果(MME)(阴影部分表示该格点有95%以上的模式呈现出同样的相关性变化);(b)、(d)、(f)分别为(a)、(c)、(e)三个模式相关关系的显著性检验结果(绿色部分表示该格点可以通过0.05的显著性检验,图f中阴影部分表示该格点有80%以上的模式在该格点的相关性是显著的)
Figure 3. Evaluation results of the annual average maximum air temperature in China from 1961 to 2014 simulated by CMIP6 models: (a) correlation between the NorESM2-MM simulation and observation; (c) correlation between the KIOST-ESM simulation and observation; (e) multi-model ensemble results (MME) (the shaded part indicates that 95% of the patterns in the grid show the same variation in correlation); (b), (d), and (f) are the significance test results of the correlation between models in (a), (c), and (e), respectively (the green part indicates that the grid point can pass the 0.05 significance test, and the shaded part in Fig. 3f indicates that more than 80% of the patterns in the grid point are significantly correlated)
图 4 CMIP6模式模拟1961~2014中国年均最低气温评估结果:(a)CanESM5模式与观测相关性;(c)INM-CM5-0模式与观测相关性;(e)多模式集合模拟结果(MME)(阴影部分表示该格点有95%的模式呈现出同样的相关性变化);(b)、(d)、(f)分别为(a)、(c)、(e)三个模式相关关系的显著性检验结果(绿色部分表示该格点可以通过0.05水平的显著性检验,4f中阴影部分表示该格点有80%以上的模式在该格点的相关性是显著的)
Figure 4. Evaluation results of the annual average minimum air temperature in China simulated by the CMIP6 model from 1961 to 2014: (a) Correlation between the CanESM5 simulation and observation; (c) correlation between the INM-CM5-0 simulation and observation; (e) multi-model ensemble results (MME) (the shaded part indicates that 95% of the patterns in the grid show the same variation in correlation); (b), (d), and (f) are the significance test results of the correlation between models in (a), (c), and (e), respectively (the green part indicates that the grid point can pass the 0.05 significance test, and the shaded part in Fig. 4f indicates that more than 80% of the patterns in the grid point are significantly correlated)
图 5 (a、b)CMIP6模式模拟的、(c、d)CN05.1数据、(e、f)CMIP6集合平均(MME)模拟的1995~2014年气候态中国最高(左侧)和最低(右侧)气温空间分布
Figure 5. Spatial distributions of China’s annual mean maximum (left panel) and minimum (right panel) air temperature from 1995 to 2014 simulated by the (a, b) CMIP6 models, (c, d) CN05.1 data, and (e, f) CMIP6 ensemble mean (MME)
图 7 CMIP6模式1995~2014年平均的中国(a)最高气温和(b)最低气温空间分布模拟结果的Taylor图(红点:多模式集合平均;REF:观测;到REF的距离:中心化均方根误差;半径:标准差之比;方位角:空间相关系数;绿色符号:模式中相关性最高的前三个模式;橙色符号:模式中标准差与观测最为接近的前三个模式;数字:与表1中序号对应的模式的评估结果)
Figure 7. Taylor diagrams of simulation results for the average spatial distribution of (a) maximum and (b) minimum air temperature in China from 1995 to 2014 (red dot: Multi-model ensemble; REF: Observation; distance from REF point: Centralized root mean square error; radial distance: Ratio of standard deviation; azimuthal position: Spatial correlation coefficient; Green symbols: The top three patterns with the highest correlation among the patterns; Orange symbols: The first three models in which the standard deviation is closest to the observation; Numbers: Evaluation results for the pattern corresponding to the ordinal number in Table 1)
图 8 26个CMIP6模式与观测1961~2014年中国最低气温EOF前两个模态的空间和时间相关系数(ACC1代表第一模态空间相关系数;ACC2代表第二模态空间相关系数;TCC1代表第一模态时间序列的相关系数;TCC2代表第二模态时间序列的相关系数)
Figure 8. Spatial and temporal correlation coefficients for the first two EOF principal components of the minimum air temperature during 1961–2014 over China between the CMIP6 models and CN05.1 (ACC1 and ACC2 indicate the spatial correlation coefficients for the first and second EOF principal components, respectively. TCC1 and TCC2 correspond to the temporal correlation coefficients for the first and second principal components, respectively)
表 1 CMIP6模式简介
Table 1. Information of CMIP6 models
序号 模式名称 国家 所属机构 分辨率(纬度×经度) 1 ACCESS-CM2 澳大利亚 英联邦科学与工业研究组织(CSIRO)与气象局(BOM) 1.875°×1.25° 2 ACCESS-ESM1-5 澳大利亚 英联邦科学和工业研究组织(CSIRO) 1.875°×1.24° 3 AWI-CM-1-1-MR 德国 阿尔弗雷德·韦格纳研究所(AWI),赫尔姆霍兹极地和海洋研究中心(HCPMR) 0.9375°×0.9375° 4 AWI-ESM-1-1-LR 德国 阿尔弗雷德·韦格纳研究所(AWI) 1.875°×1.875° 5 BCC-CSM2-MR 中国 北京气候中心(BCC) 1.125°×1.125° 6 BCC-ESM1 中国 北京气候中心(BCC) 2.8125×2.8125° 7 CanESM5 加拿大 加拿大气候建模和分析中心(CCCma) 2.8125°×2.8125° 8 EC-Earth3 瑞典 欧共体地球联合会(EC) 0.703°×0.703° 9 EC-Earth3-Veg 瑞典 欧共体地球联合会(EC) 0.703°×0.703° 10 EC-Earth3-Veg-LR 瑞典 欧共体地球联合会(EC) 1.125°×1.125° 11 FGOALS-f3-L 中国 中国科学院大气物理研究所(IAP,CAS)大气科学和地球流体力学数值模拟国家重点实验室 1.25°×1.25° 12 FGOALS-g3 中国 中国科学院大气物理研究所(CAS) 2.0°×2.0° 13 GFDL-CM4 美国 美国国家海洋和大气管理局地球物理流体动力学实验室(GFDL) 1.25°×1.25° 14 GFDL-ESM4 美国 美国国家海洋和大气管理局地球物理流体动力学实验室(GFDL) 1.25°×1.0° 15 GISS-E2-1-G 美国 美国宇航局戈达德空间研究所(GISS) 2.5°×2.0° 16 INM-CM4-8 俄罗斯 俄罗斯科学院数值数学研究所(INMRAS) 2.0°×1.5° 17 INM-CM5-0 俄罗斯 俄罗斯科学院数值数学研究所(INMRAS) 2.0°×1.6° 18 IPSL-CM6A-LR 法国 皮埃尔·西蒙·拉普拉斯学院(IPSL) 2.5°×1.25° 19 KIOST-ESM 韩国 韩国海洋科学技术研究所(KIOST) 1.875°×1.875° 20 MIROC6 日本 日本海洋地球科学技术厅(JAMSTEC) 1.40625°×1.40625° 21 MPI-ESM-1-2-HAM 德国 马克斯普朗克气象研究所(MPI-M) 1.975°×1.975° 22 MPI-ESM1-2-HR 德国 马克斯普朗克气象研究所(MPI-M) 0.9375°×0.9376° 23 MPI-ESM1-2-LR 德国 马克斯普朗克气象研究所(MPI-M) 1.875°×1.875° 24 MRI-ESM2-0 日本 日本气象厅气象研究所(JMA) 1.125°×1.126° 25 NorESM2-MM 挪威 挪威气候中心(NorCC) 1.25°×0.9375° 26 NESM3 中国 南京信息工程大学(NUIST) 1.875°×1.875° 表 2 观测和CMIP6模式模拟的中国最高气温和最低气温变化线性趋势
Table 2. Linear trends of China’s average maximum and minimum air temperature from observations and CMIP6 models simulations
数据来源 最高气温变化的线性
趋势/°C(100 a)−1最低气温的线性趋
势/°C(100 a)−1观测(CN05.1) 2.15 3.92 ACCESS-CM2 1.76 1.87 ACCESS-ESM1-5 2.60 2.75 AWI-CM-1-1-MR 2.36 2.60 AWI-ESM-1-1-LR 2.36 2.59 BCC-CSM2-MR 1.81 2.03 BCC-ESM1 2.15 2.33 CanESM5 2.89 3.11 EC-Earth3 3.45 3.91 EC-Earth3-Veg 2.74 3.14 EC-Earth3-Veg-LR 2.26 2.55 FGOALS-f3-L 2.38 2.58 FGOALS-g3 2.03 2.25 GFDL-CM4 2.44 2.63 GFDL-ESM4 1.52 1.67 GISS-E2-1-G 2.04 2.24 INM-CM4-8 1.53 1.71 INM-CM5-0 1.59 1.80 IPSL-CM6A-LR 1.78 2.06 KIOST-ESM 2.49 2.84 MIROC6 1.49 1.60 MPI-ESM-1-2-HAM 1.86 2.05 MPI-ESM1-2-HR 1.48 1.68 MPI-ESM1-2-LR 2.01 2.19 MRI-ESM2-0 2.02 2.28 NESM3 2.36 2.38 NorESM2-MM 1.83 1.91 多模式集合(MME) 2.12 2.34 -
[1] Chen H P, Sun J Q. 2015. Changes in climate extreme events in China associated with warming [J]. Int. J. Climatol., 35(10): 2735−2751. doi: 10.1002/joc.4168 [2] Christy J R, Norris W B. 2006. Satellite and VIZ-radiosonde intercomparisons for diagnosis of nonclimatic influences [J]. J. Atmos. Oceanic Technol., 23(9): 1181−1194. doi: 10.1175/JTECH1937.1 [3] 崔妍, 李倩, 周晓宇, 等. 2013. 5个全球气候模式对中国东北地区地面温度的模拟与预估 [J]. 气象与环境学报, 29(4): 37−46. doi: 10.3969/j.issn.1673-503X.2013.04.006Cui Yan, Li Qian, Zhou Xiaoyu, et al. 2013. Simulation and projection of the surface temperature based on five global climate models over the northeast China [J]. Journal of Meteorology and Environment (in Chinese), 29(4): 37−46. doi: 10.3969/j.issn.1673-503X.2013.04.006 [4] Ding Y H, Ren G Y, Zhao Z C, et al. 2007. Detection, causes and projection of climate change over China: An overview of recent progress [J]. Adv. Atmos. Sci., 24(6): 954−971. doi: 10.1007/s00376-007-0954-4 [5] Dong S Y, Xu Y, Zhou B T, et al. 2015. Assessment of indices of temperature extremes simulated by multiple CMIP5 models over China [J]. Adv. Atmos. Sci., 32(8): 1077−1091. doi: 10.1007/s00376-015-4152-5 [6] 郭彦, 董文杰, 任福民, 等. 2013. CMIP5模式对中国年平均气温模拟及其与CMIP3模式的比较 [J]. 气候变化研究进展, 9(3): 181−186. doi: 10.3969/j.issn.1673-1719.2013.03.004Guo Yan, Dong Wenjie, Ren Fumin, et al. 2013. Assessment of CMIP5 simulations for China annual average surface temperature and its comparison with CMIP3 simulations [J]. Progressus Inquisitiones de Mutatione Climatis (in Chinese), 9(3): 181−186. doi: 10.3969/j.issn.1673-1719.2013.03.004 [7] Fall S, Watts A, Nielsen‐Gammon J, et al. 2011. Analysis of the impacts of station exposure on the U. S. Historical Climatology Network temperatures and temperature trends [J]. J. Geophys. Res., 116(D14): D14120. doi: 10.1029/2010JD015146 [8] Gupta V, Singh V, Jain M K. 2020. Assessment of precipitation extremes in India during the 21st century under SSP1-1.9 mitigation scenarios of CMIP6 GCMs [J]. J. Hydrol., 590: 125422. doi: 10.1016/j.jhydrol.2020.125422 [9] 胡芩, 姜大膀, 范广洲. 2014. CMIP5全球气候模式对青藏高原地区气候模拟能力评估 [J]. 大气科学, 38(5): 924−938. doi: 10.3878/j.issn.1006-9895.2013.13197Hu Qin, Jiang Dabang, Fan Guangzhou. 2014. Evaluation of CMIP5 models over the Qinghai–Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(5): 924−938. doi: 10.3878/j.issn.1006-9895.2013.13197 [10] IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 1535pp. [11] Kong X H, Wang A H, Bi X Q, et al. 2019. Assessment of temperature extremes in China using RegCM4 and WRF [J]. Adv. Atmos. Sci., 36(4): 363−377. doi: 10.1007/s00376-018-8144-0 [12] 刘敏, 江志红. 2009. 13个IPCC AR4模式对中国区域近40a气候模拟能力的评估 [J]. 南京气象学院学报, 32(2): 256−268. doi: 10.3969/j.issn.1674-7097.2009.02.013Liu Min, Jiang Zhihong. 2009. Simulation ability evaluation of surface temperature and precipitation by thirteen IPCC AR4 coupled climate models in China during 1961−2000 [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 32(2): 256−268. doi: 10.3969/j.issn.1674-7097.2009.02.013 [13] Luo N, Guo Y, Gao Z B, et al. 2020. Assessment of CMIP6 and CMIP5 model performance for extreme temperature in China [J]. Atmos. Oceanic Sci. Lett., 13(6): 589−597. doi: 10.1080/16742834.2020.1808430 [14] 秦大河, 罗勇, 陈振林, 等. 2007. 气候变化科学的最新进展: IPCC第四次评估综合报告解析 [J]. 气候变化研究进展, 3(6): 311−314. doi: 10.3969/j.issn.1673-1719.2007.06.001Qin Dahe, Luo Yong, Chen Zhenlin, et al. 2007. Latest advances in climate change sciences: Interpretation of the synthesis report of the IPCC fourth assessment report [J]. Advances in Climate Change Research (in Chinese), 3(6): 311−314. doi: 10.3969/j.issn.1673-1719.2007.06.001 [15] 沈雨辰. 2014. CMIP5模式对中国极端气温指数模拟的评估及其未来预估 [D]. 南京信息工程大学硕士学位论文, 55pp. Shen Yuchen. 2014. Projection and evaluation of the temperature extremes indices over China by CMIP5 models [D]. M. S. thesis (in Chinese), Nanjing University of Information Science and Technology, 55pp. [16] Sillmann J, Kharin V V, Zhang X, et al. 2013a. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate [J]. J. Geophys. Res., 118(4): 1716−1733. doi: 10.1002/jgrd.50203 [17] Sillmann J, Kharin V V, Zwiers F W, et al. 2013b. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections [J]. J. Geophys. Res., 118(6): 2473−2493. doi: 10.1002/jgrd.50188 [18] 汤秭晨, 李清泉, 王黎娟, 等. 2021. CMIP6年代际试验对中国气温预测能力的初步评估 [J]. 气候变化研究进展, 17(2): 162−174. doi: 10.12006/j.issn.1673-1719.2020.029Tang Zichen, Li Qingquan, Wang Lijuan, et al. 2021. Preliminary assessment on CMIP6 decadal prediction ability of air temperature over China [J]. Climate Change Research (in Chinese), 17(2): 162−174. doi: 10.12006/j.issn.1673-1719.2020.029 [19] 陶纯苇, 姜超, 孙建新. 2016. CMIP5模式对中国东北气候模拟能力的评估 [J]. 气候与环境研究, 21(3): 357−366. doi: 10.3878/j.issn.1006-9585.2015.15275Tao Chunwei, Jiang Chao, Sun Jianxin. 2016. Evaluation of CMIP5 models performance on climate simulation in Northeast China [J]. Climatic and Environmental Research (in Chinese), 21(3): 357−366. doi: 10.3878/j.issn.1006-9585.2015.15275 [20] Wang J, Chen Y, Tett S F, et al. 2020. Anthropogenically-driven increases in the risks of summertime compound hot extremes [J]. Nat. Commun., 11(1): 528. doi: 10.1038/s41467-019-14233-8 [21] 魏培培, 董广涛, 史军, 等. 2019. 华东地区极端降水动力降尺度模拟及未来预估 [J]. 气候与环境研究, 24(1): 86−104. doi: 10.3878/j.issn.1006-9585.2018.17169Wei Peipei, Dong Guangtao, Shi Jun, et al. 2019. Dynamical downscaling simulation and projection of extreme precipitation over East China [J]. Climatic and Environmental Research (in Chinese), 24(1): 86−104. doi: 10.3878/j.issn.1006-9585.2018.17169 [22] Williams C N, Menne M J, Thorne P W. 2012. Benchmarking the performance of pairwise homogenization of surface temperatures in the United States [J]. J. Geophys. Res., 117(D5): D05116. doi: 10.1029/2011JD016761 [23] 吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比 [J]. 地球物理学报, 56(4): 1102−1111. doi: 10.6038/cjg20130406Wu Jia, Gao Xuejie. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese J. Geophys. (in Chinese), 56(4): 1102−1111. doi: 10.6038/cjg20130406 [24] 吴蔚, 穆海振, 梁卓然, 等. 2016. CMIP5 全球气候模式对上海极端气温和降水的情景预估 [J]. 气候与环境研究, 21(3): 269−281. doi: 10.3878/j.issn.1006-9585.2016.14225Wu Wei, Mu Haizhen, Liang Zhuoran, et al. 2016. Projected changes in extreme temperature and precipitation events in Shanghai based on CMIP5 simulations [J]. Climatic and Environmental Research (in Chinese), 21(3): 269−281. doi: 10.3878/j.issn.1006-9585.2016.14225 [25] 伍清, 蒋兴文, 谢洁, 等. 2018. 基于CMIP5资料的西南地区2020~2050年气温多模式集合预估 [J]. 干旱气象, 36(6): 971−978. doi: 10.11755/j.issn.1006-7639(2018)-06-0971Wu Qing, Jiang Xingwen, Xie Jie, et al. 2018. Multimodel superensemble prediction of air temperature in southwestern China during 2020−2050 based on CMIP5 data [J]. Journal of Arid Meteorology (in Chinese), 36(6): 971−978. doi: 10.11755/j.issn.1006-7639(2018)-06-0971 [26] 向竣文, 张利平, 邓瑶, 等. 2021. 基于CMIP6的中国主要地区极端气温/降水模拟能力评估及未来情景预估 [J]. 武汉大学学报(工学版), 54(1): 46−57, 81. doi: 10.14188/j.1671-8844.2021-01-007Xiang Junwen, Zhang Liping, Deng Yao, et al. 2021. Projection and evaluation of extreme temperature and precipitation in major regions of China by CMIP6 models [J]. Engineering Journal of Wuhan University, 54(1): 46−57, 81. doi: 10.14188/j.1671-8844.2021-01-007 [27] Xu Y, Xu C H. 2012. Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models [J]. Atmos. Oceanic Sci. Lett., 5(6): 489−494. doi: 10.1080/16742834.2012.11447041 [28] 许崇海, 沈新勇, 徐影. 2007. IPCC AR4模式对东亚地区气候模拟能力的分析 [J]. 气候变化研究进展, 3(5): 287−292. doi: 10.3969/j.issn.1673-1719.2007.05.008Xu Chonghai, Shen Xinyong, Xu Ying. 2007. An analysis of climate change in East Asia by using the IPCC AR4 simulations [J]. Advances in Climate Change Research (in Chinese), 3(5): 287−292. doi: 10.3969/j.issn.1673-1719.2007.05.008 [29] 杨绚, 李栋梁, 汤绪. 2014. 基于CMIP5多模式集合资料的中国气温和降水预估及概率分析 [J]. 中国沙漠, 34(3): 795−804. doi: 10.7522/j.issn.1000-694X.2013.00381Yang Xuan, Li Dongliang, Tang Xu. 2014. Probability assessment of temperature and precipitation over China by CMIP5 multi-model ensemble [J]. Journal of Desert Research (in Chinese), 34(3): 795−804. doi: 10.7522/j.issn.1000-694X.2013.00381 [30] 杨阳, 戴新刚, 唐恒伟, 等. 2019. CMIP5模式降水订正法及未来30年中国降水预估 [J]. 气候与环境研究, 24(6): 769−784. doi: 10.3878/j.issn.1006-9585.2019.19021Yang Yang, Dai Xingang, Tong Hangwai, et al. 2019. CMIP5 model precipitation bias-correction methods and projected China precipitation for the next 30 years [J]. Climatic and Environmental Research (in Chinese), 24(6): 769−784. doi: 10.3878/j.issn.1006-9585.2019.19021 [31] You Q L, Cai Z Y, Wu F Y, et al. 2021. Temperature dataset of CMIP6 models over China: Evaluation, trend and uncertainty [J]. Climate Dyn., 57(1): 17−35. doi: 10.1007/s00382-021-05691-2 [32] 曾毓金, 谢正辉. 2015. 基于CMIP5模拟的中国区域陆气耦合强度评估及未来情景预估 [J]. 气候与环境研究, 20(3): 337−346. doi: 10.3878/j.issn.1006-9585.2015.14242Zeng Yujin, Xie Zhenghui. 2015. Projection and evaluation of the land−atmosphere coupling strength over China by CMIP5 models [J]. Climatic and Environmental Research (in Chinese), 20(3): 337−346. doi: 10.3878/j.issn.1006-9585.2015.14242 [33] 张莉, 丁一汇, 孙颖. 2008. 全球海气耦合模式对东亚季风降水模拟的检验 [J]. 大气科学, 32(2): 261−276. doi: 10.3878/j.issn.1006-9895.2008.02.06Zhang Li, Ding Yihui, Sun Ying. 2008. Evaluation of precipitation simulation in East Asian monsoon areas by coupled ocean−atmosphere general circulation models [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(2): 261−276. doi: 10.3878/j.issn.1006-9895.2008.02.06 [34] 张丽霞, 陈晓龙, 辛晓歌. 2019. CMIP6情景模式比较计划(ScenarioMIP)概况与评述 [J]. 气候变化研究进展, 15(5): 519−525. doi: 10.12006/j.issn.1673-1719.2019.082Zhang Lixia, Chen Xiaolong, Xin Xiaoge. 2019. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP) [J]. Climate Change Research (in Chinese), 15(5): 519−525. doi: 10.12006/j.issn.1673-1719.2019.082 [35] Zhao T B, Chen L, Ma Z G. 2014. Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models [J]. Chinese Science Bulletin, 59(4): 412−429. doi: 10.1007/s11434-013-0003-x [36] 赵亮, 刘健, 靳春寒. 2019. CMIP5多模式集合对江苏省气候变化模拟评估及情景预估 [J]. 气象科学, 39(6): 739−746. doi: 10.3969/2018jms.0064Zhao Liang, Liu Jian, Jin Chunhan. 2019. Evaluation and projection of climate change in Jiangsu Province based on the CMIP5 multi-model ensemble mean datasets [J]. Journal of the Meteorological Sciences (in Chinese), 39(6): 739−746. doi: 10.3969/2018jms.0064 [37] 智协飞, 伍清, 白永清, 等. 2010. 基于IPCC-AR4模式资料的地面气温超级集合预测 [J]. 气象科学, 30(5): 708−714. doi: 10.3969/j.issn.1009-0827.2010.05.019Zhi Xiefei, Wu Qing, Bai Yongqing, et al. 2010. The multimodel superensemble prediction of the surface temperature using the IPCC AR4 scenario runs [J]. Scientia Meteorologica Sinica (in Chinese), 30(5): 708−714. doi: 10.3969/j.issn.1009-0827.2010.05.019 [38] Zhou T J, Yu R C. 2006. Twentieth-century surface air temperature over China and the globe simulated by coupled climate models [J]. J. Climate, 19(22): 5843−5858. doi: 10.1175/JCLI3952.1 [39] 周秀华, 肖子牛. 2014. 基于CMIP5资料的云南及周边地区未来50年气候预估 [J]. 气候与环境研究, 19(5): 601−613. doi: 10.3878/j.issn.1006-9585.2013.13080Zhou Xiuhua, Xiao Ziniu. 2014. Climate projection over Yunnan Province and the surrounding regions based on CMIP5 data [J]. Climatic and Environmental Research (in Chinese), 19(5): 601−613. doi: 10.3878/j.issn.1006-9585.2013.13080 [40] Zhou Y Q, Ren G Y. 2011. Change in extreme temperature event frequency over mainland China, 1961−2008 [J]. Climate Research, 50(2-3): 125−139. doi: 10.3354/cr01053 [41] Zhou B T, Wen Q H, Xu Y, et al. 2014. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles [J]. J. Climate, 27(17): 6591−6611. doi: 10.1175/JCLI-D-13-00761.1 [42] 周天军, 邹立维, 陈晓龙. 2019. 第六次国际耦合模式比较计划(CMIP6)评述 [J]. 气候变化研究进展, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193Zhou Tianjun, Zou Liwei, Chen Xiaolong. 2019. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6) [J]. Climate Change Research (in Chinese), 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193 [43] 左正康, 张飞舟, 张玲, 等. 2020. 基于时空分布式的CMIP5气候多模式集合优化 [J]. 北京大学学报(自然科学版): 56(5): 805–814.Zuo Zhengkang, Zhang Feizhou, Zhang Ling, et al. 2020. CMIP5 climate multi-model ensemble optimization based on spatial−temporal distribution [J]. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 56(5): 805–814. doi: 10.13209/j.0479-8023.2020.057 -