高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市建筑布局要素对区域热环境影响的ENVI-met模拟与分析——以南京江北新区部分区域为例

张桂欣 刘祎 祝善友

张桂欣, 刘祎, 祝善友. 2022. 城市建筑布局要素对区域热环境影响的ENVI-met模拟与分析——以南京江北新区部分区域为例[J]. 气候与环境研究, 27(4): 513−522 doi: 10.3878/j.issn.1006-9585.2021.21028
引用本文: 张桂欣, 刘祎, 祝善友. 2022. 城市建筑布局要素对区域热环境影响的ENVI-met模拟与分析——以南京江北新区部分区域为例[J]. 气候与环境研究, 27(4): 513−522 doi: 10.3878/j.issn.1006-9585.2021.21028
ZHANG Guixin, LIU Yi, ZHU Shanyou. 2022. Influence of Urban Building Layout on the Regional Thermal Environment using the ENVI-Met Model: A Case Study in a Region of the Nanjing Jiangbei New Area [J]. Climatic and Environmental Research (in Chinese), 27 (4): 513−522 doi: 10.3878/j.issn.1006-9585.2021.21028
Citation: ZHANG Guixin, LIU Yi, ZHU Shanyou. 2022. Influence of Urban Building Layout on the Regional Thermal Environment using the ENVI-Met Model: A Case Study in a Region of the Nanjing Jiangbei New Area [J]. Climatic and Environmental Research (in Chinese), 27 (4): 513−522 doi: 10.3878/j.issn.1006-9585.2021.21028

城市建筑布局要素对区域热环境影响的ENVI-met模拟与分析——以南京江北新区部分区域为例

doi: 10.3878/j.issn.1006-9585.2021.21028
基金项目: 国家自然科学基金项目42171101、41871028
详细信息
    作者简介:

    张桂欣,女,1976年生,博士,讲师,主要从事热红外遥感与应用研究。E-mail: zgxzsy@163.com

  • 中图分类号: TP79 P463.3

Influence of Urban Building Layout on the Regional Thermal Environment using the ENVI-Met Model: A Case Study in a Region of the Nanjing Jiangbei New Area

Funds: National Natural Science Foundation of China (Grants 42171101 and 41871028)
  • 摘要: 开展城市建筑物方位、高度等建筑布局要素对局地热环境时空变化的影响研究,对于合理的城市规划布局具有重要理论意义与实践参考价值。采用ENVI-met 微气候模式,在南京江北新区顶山街道某区域微气候模拟的基础上,选择一个二类居住用地并设计不同的建筑布局要素作为规划场景,模拟分析了建筑物高度与建筑间距之比(H/W)、建筑布局变化对区域热环境的影响。结果表明:ENVI-met 能够以较高精度模拟2 m高度气温;H/W与建筑布局形式都会影响区域热环境,适当增加H/W可在一定程度上降低夏季气温,H/W为1.4时的热环境更为舒适,而不同建筑布局形式下的不同区域温度差异较大。
  • 图  1  ENVI-met模拟的真实场景所在区域及其2011年3月14日GeoEye-1真彩色合成遥感影像

    Figure  1.  Real scenario location and the corresponding GeoEye-1 true color composite image data used for the ENVI-met simulation on 14 March 2011

    图  2  (a)H/W=0.7、(b)H/W=1.4、(c)H/W=2.8建筑三维建模(灰色为建筑;绿色为植被;白色为硬质地面):

    Figure  2.  3D models for different H/W values: (a) H/W=0.7; (b) H/W=1.4; (c) H/W=2.8. Gray: building, Green: Vegetation, White: impervious hard ground

    图  3  (a)片块式、(b)围合式、(c)轴线式建筑布局三维建模(灰色为建筑;绿色为植被;白色为硬质地面)

    Figure  3.  3D models for different building layouts: (a) Block type; (b) enclosed type; (c) axial type. Gray: building, Green: Vegetation, White: impervious hard ground

    图  4  2013年8月8日08:00至8月9日08:00顶山自动气象站观测气温与ENVI-met模拟气温对比:(a) 24 h气温变化曲线对比;(b) 模拟气温与观测气温散点图

    Figure  4.  Air temperature comparison between station observation and ENVI-met model simulation during the period of 0800 LST 8 August to 0800 LST 9 August 2013: (a) Comparison of 24-h temperature variance curves; (b) scatter diagram between the simulated and observed air temperatures

    图  5  2013年8月8日08:00顶山气象站2 m高度气温空间分布:(a)H/W=0.7;(b)H/W=1.4;(c)H/W=2.8

    Figure  5.  Air temperature distribution Dingshan meteorological station at the height of 2 m at 0800 LST 8 August 2013: (a) H/W=0.7; (b) H/W=1.4; (c) H/W=2.8

    图  6  2013年8月8日14:00顶山气象站2 m高度气温空间分布:(a)H/W=0.7;(b)H/W=1.4;(c)H/W=2.8

    Figure  6.  Air temperature distribution Dingshan meteorological station at the height of 2 m at 1400 LST 8 August 2013: (a) H/W=0.7; (b) H/W=1.4; (c) H/W=2.8

    图  7  2013年8月8日14:00顶山气象站2 m高度风速分布:(a)H/W=0.7;(b)H/W=1.4;(c)H/W=2.8

    Figure  7.  Wind speed distribution Dingshan meteorological station at the height of 2 m at 1400 LST 8 August 2013: (a) H/W=0.7; (b) H/W=1.4; (c) H/W=2.8

    图  8  2013年8月8日22:00顶山气象站2 m高度气温空间分布:(a)H/W=0.7;(b)H/W=1.4;(c)H/W=2.8

    Figure  8.  Air temperature distribution Dingshan meteorological station at the height of 2 m at 2200 LST 8 August 2013: (a) H/W=0.7; (b) H/W=1.4; (c) H/W=2.8

    图  9  2013年8月8日08:00顶山气象站2 m高度气温空间分布:(a)片块式;(b)围合式;(c)轴线式

    Figure  9.  Air temperature distribution Dingshan meteorological station at the height of 2 m at 0800 LST 8 August 2013:(a) block type; (b) enclosed type; (c) axial type

    图  10  2013年8月8日14:00顶山气象站2 m高度气温空间分布:(a)片块式;(b)围合式;(c)轴线式

    Figure  10.  Air temperature distribution Dingshan meteorological station at the height of 2 m at 1400 LST 8 August 2013: (a) block type; (b) enclosed type; (c) axial type

    图  11  2013年8月8日14:00顶山气象站2 m风速分布:(a)片块式;(b)围合式;(c)轴线式

    Figure  11.  Wind speed distribution Dingshan meteorological station at the height of 2 m at 1400 LST 8 August 2013: (a) block type; (b) enclosed type; (c) axial type

    图  12  2013年8月8日22:00顶山气象站2 m高度气温空间分布:(a)片块式;(b)围合式;(c)轴线式

    Figure  12.  Air temperature distribution Dingshan meteorological station at the height of 2 m at 2200 LST 8 August 2013: (a) block type; (b) enclosed type; (c) axial type

  • [1] Ali-Toudert F, Mayer H. 2006. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate [J]. Build. Environ., 41(2): 94−108. doi: 10.1016/j.buildenv.2005.01.013
    [2] Andreou E. 2014. The effect of urban layout, street geometry and orientation on shading conditions in urban canyons in the Mediterranean [J]. Renew. Energy, 63: 587−596. doi: 10.1016/j.renene.2013.09.051
    [3] Bruse M, Fleer H. 1998. Simulating surface−plant−air interactions inside urban environments with a three dimensional numerical model [J]. Environ. Modell. Softw., 13(3-4): 373−384. doi: 10.1016/S1364-8152(98)00042-5
    [4] Chen H, Ooka R, Harayama K, et al. 2004. Study on outdoor thermal environment of apartment block in Shenzhen, China with coupled simulation of convection, radiation and conduction [J]. Energy Build., 36(12): 1247−1258. doi: 10.1016/j.enbuild.2003.07.003
    [5] Chow W T L, Pope R L, Martin C A, et al. 2011. Observing and modeling the nocturnal park cool island of an arid city: Horizontal and vertical impacts [J]. Theor. Appl. Climatol., 103(1-2): 197−211. doi: 10.1007/s00704-010-0293-8
    [6] 段汉明, 朴浩, 赵志愿, 等. 2016. 城市详细规划设计[M]. 2版. 北京: 科学出版社, 134–142

    Duan Hanming, Piao Hao, Zhao Zhiyuan, et al. 2016. Urban Detailed Planning and Design (in Chinese) [M]. 2nd ed. Beijing: Science Press, 134–142.
    [7] 耿红凯, 卫笑, 张明娟, 等. 2020. 基于Envi-met植被与建筑对微气候影响的研究——以南京农业大学为例 [J]. 北京林业大学学报, 42(12): 115−124. doi: 10.12171/j.1000-1522.20190418

    Geng Hongkai, Wei Xiao, Zhang Mingjuan, et al. 2020. Influence of vegetation and architecture on microclimate based on Envi-met: A case study of Nanjing Agricultural University [J]. J. Beijing For. Univ. (in Chinese), 42(12): 115−124. doi: 10.12171/j.1000-1522.20190418
    [8] Krüger E L, Minella F O, Rasia F. 2011. Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil [J]. Build. Environ., 46(3): 621−634. doi: 10.1016/j.buildenv.2010.09.006
    [9] 乐地. 2012. 高层建筑布局对城市区域热环境影响的研究 [D]. 湖南大学博士学位论文. 91–92. Le Di. 2012. Study on the influence of high-rise buildings layout on urban regional thermal environment [D]. Ph. D. dissertation (in Chinese), Hunan University, 91–92.
    [10] 卢薪升, 杨鑫. 2018. 基于ENVI-met软件小气候模拟与热舒适度体验的城市更新研究——以北京石景山北辛安地区为例 [J]. 城市发展研究, 25(4): C23−C28. doi: 10.3969/j.issn.1006-3862.2018.04.020

    Lu Xinsheng, Yang Xin. 2018. Research on urban renewal methods based on ENVI-met software microclimate simulation and thermal comfort experience: A case study of Bei Xin’an Area in Shijingshan in Beijing [J]. Urban Dev. Stud. (in Chinese), 25(4): C23−C28. doi: 10.3969/j.issn.1006-3862.2018.04.020
    [11] McRae I, Freedman F, Rivera A, et al. 2020. Integration of the WUDAPT, WRF, and ENVI-met models to simulate extreme daytime temperature mitigation strategies in San Jose, California [J]. Build. Environ., 184: 107180. doi: 10.1016/j.buildenv.2020.107180
    [12] 苗世光, 王晓云, 蒋维楣, 等. 2013. 城市规划中绿地布局对气象环境的影响——以成都城市绿地规划方案为例 [J]. 城市规划, 37(6): 41−46.

    Miao Shiguang, Wang Xiaoyun, Jiang Weimei, et al. 2013. Impact on atmospheric environment by green space layout in urban planning: A case study on green space planning of Chengdu [J]. City Plann. Rev. (in Chinese), 37(6): 41−46.
    [13] 秦文翠, 胡聃, 李元征, 等. 2015. 基于ENVI-met的北京典型住宅区微气候数值模拟分析 [J]. 气象与环境学报, 31(3): 56−62.

    Qin Wencui, Hu Dan, Li Yuanzheng, et al. 2015. Numerical simulation of microclimate in Beijing typical residential area based on ENVI-met model [J]. J. Meteor. Environ. (in Chinese), 31(3): 56−62.
    [14] Shareef S, Abu-Hijleh B. 2020. The effect of building height diversity on outdoor microclimate conditions in hot climate. A case study of Dubai-UAE [J]. Urban Climate, 32: 100611. doi: 10.1016/j.uclim.2020.100611
    [15] Unger J. 2004. Intra-urban relationship between surface geometry and urban heat island: Review and new approach [J]. Climate Res., 27(3): 253−264. doi: 10.3354/cr027253
    [16] 王若晨, 潘剑彬, 赵博石, 等. 2020. 不同布局形式城市街道热环境特征研究 [J]. 北京建筑大学学报, 36(2): 40−48. doi: 10.19740/j.1004-6011.2020.02.06

    Wang Ruochen, Pan Jianbin, Zhao Boshi, et al. 2020. Quantitative simulation of street layout in Beijing based on urban thermal environment [J]. J. Beijing Univ. Civ. Eng. Archit. (in Chinese), 36(2): 40−48. doi: 10.19740/j.1004-6011.2020.02.06
    [17] 王伟武, 张雍雍. 2010. 城市住区热环境可控影响因素定量分析[J]. 浙江大学学报(工学版), 44(12): 2348–2353, 2382. Wang Weiwu, Zhang Yongyong. 2010. Quantitative analysis of controllable factors affecting thermal environment in city residential area[J]. J. Zhejiang Univ

    Eng. Sci. (in Chinese), 44(12): 2348–2353, 2382. doi: 10.3785/j.issn.1008-973X.2010.12.019
    [18] 王晓云, 王昕瑶, 李忠良, 等. 2018. 北京城镇规划对气象条件影响的定量分析 [J]. 气象科学, 38(3): 351−360. doi: 10.3969/2017jms.0051

    Wang Xiaoyun, Wang Xinyao, Li Zhongliang, et al. 2018. Quantitative analysis of town planning’s impact on meteorological conditions in Beijing [J]. J. Meteor. Sci. (in Chinese), 38(3): 351−360. doi: 10.3969/2017jms.0051
    [19] 王振. 2008. 夏热冬冷地区基于城市微气候的街区层峡气候适应性设计策略研究 [D]. 华中科技大学博士学位论文. Wang Zhen. 2008. Design strategies for the climate adaptability of street canyon based on urban microclimate in hot-summer and cold-winter zone [D]. Ph. D. dissertation (in Chinese), Huazhong University of Science and Technology.
    [20] 吴婕, 徐影, 师宇. 2015. 华南地区城市化对区域气候变化的影响 [J]. 气候与环境研究, 20(6):654−662. Wu Jie, Xu Ying, Shi Yu. 2015. Urbanization effects on local climate change in South China[J]. Climatic Environ. Res., 20(6): 654−662.
    [21] 薛思寒, 肖毅强, 王琨. 2018. 湿热地区景观要素配置对园林热环境的影响研究 [J]. 中国园林, 34(2): 29−33. doi: 10.3969/j.issn.1000-6664.2018.02.006

    Xue Sihan, Xiao Yiqiang, Wang Kun. 2018. The effects of landscape element configuration on garden thermal environment in hot and humid regions [J]. Chinese Landscape Archit. (in Chinese), 34(2): 29−33. doi: 10.3969/j.issn.1000-6664.2018.02.006
    [22] 殷实, Lang W, 肖毅强. 2019. 湿热地区传统骑楼街区夏季热环境研究 [J]. 南方建筑, (4): 53−59. doi: 10.3969/j.issn.1000-0232.2019.04.053

    Yin Shi, Lang W, Xiao Yiqiang. 2019. Summer thermal environment of traditional shophouse neighborhood in hot and humid climate zone [J]. South Archit. (in Chinese), (4): 53−59. doi: 10.3969/j.issn.1000-0232.2019.04.053
    [23] 岳小智, 尹海伟, 孔繁花, 等. 2018. 基于ENVI-met的绿地布局模式对微气候的影响研究——以南京市居住小区为例 [J]. 江苏城市规划, (3): 34−40.

    Yue Xiaozhi, Yin Haiwei, Kong Fanhua, et al. 2018. The influence of green space layout on microclimate based on ENVI-met——A case study of the residential district in Nanjing [J]. Jiangsu Urban Plann. (in Chinese), (3): 34−40.
    [24] 祝善友, 高牧原, 陈亭, 等. 2017. 基于ENVI-met模式的城市近地表气温模拟与分析——以南京市部分区域为例 [J]. 气候与环境研究, 22(4): 499−507. doi: 10.3878/j.issn.1006-9585.2017.16197

    Zhu Shanyou, Gao Muyuan, Chen Ting, et al. 2017. Simulation and analysis of urban near-surface air temperature based on ENVI-met model: A case study in some areas of Nanjing [J]. Climatic Environ. Res. (in Chinese), 22(4): 499−507. doi: 10.3878/j.issn.1006-9585.2017.16197
  • 加载中
图(12)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  9
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-03
  • 网络出版日期:  2021-06-15
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回