高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMIP6模式对中国气温日较差的模拟能力评估

王双双 谢文强 延晓冬

王双双, 谢文强, 延晓冬. 2022. CMIP6模式对中国气温日较差的模拟能力评估[J]. 气候与环境研究, 27(1): 79−93 doi: 10.3878/j.issn.1006-9585.2021.21063
引用本文: 王双双, 谢文强, 延晓冬. 2022. CMIP6模式对中国气温日较差的模拟能力评估[J]. 气候与环境研究, 27(1): 79−93 doi: 10.3878/j.issn.1006-9585.2021.21063
WANG Shuangshuang, XIE Wenqiang, YAN Xiaodong. 2022. Evalution on CMIP6 Model Simulation of the Diurnal Temperature Range over China [J]. Climatic and Environmental Research (in Chinese), 27 (1): 79−93 doi: 10.3878/j.issn.1006-9585.2021.21063
Citation: WANG Shuangshuang, XIE Wenqiang, YAN Xiaodong. 2022. Evalution on CMIP6 Model Simulation of the Diurnal Temperature Range over China [J]. Climatic and Environmental Research (in Chinese), 27 (1): 79−93 doi: 10.3878/j.issn.1006-9585.2021.21063

CMIP6模式对中国气温日较差的模拟能力评估

doi: 10.3878/j.issn.1006-9585.2021.21063
基金项目: 国家重点研发计划2018YFC509003、2019YFA0606904
详细信息
    作者简介:

    王双双,女,1995年出生,硕士研究生,从事气候变化相关研究。E-mail: wangss@mail.bnu.edu.cn

    通讯作者:

    延晓冬, E-mail: yxd@bnu.edu.cn

  • 中图分类号: P467

Evalution on CMIP6 Model Simulation of the Diurnal Temperature Range over China

Funds: National Key Research and Development Project (Grants 2018YFC509003 and 2019YFA0606904)
  • 摘要: 利用CRU_TS v4.04观测数据作为验证,对28个CMIP6 (Coupled Model Intercomparison Project 6) 模式模拟中国区域内气温日较差(Diurnal Temperature Range, DTR)年际变化、气候平均态变化以及不同区域和不同季节尺度变化的能力进行评估。结果表明:在百年尺度上,CMIP6模式能够反映出年际变化中DTR下降的演变趋势,模式与观测之间的相关系数在0.1~0.7,均方根误差在0.6~1.5,Taylor 评分(Taylor Score, TS)在0.2~0.7,MRI-ESM2-0模式与观测之间的相关系数(0.65)最大,均方根误差(0.8)最小,TS(0.67)最高,模拟能力最好;在30年气候平均态尺度上,CMIP6模式符合观测呈现的DTR北方地区高、南方地区低,西部地区高、东部地区低,内陆地区高、沿海地区低,高原地区高、平原盆地地区低的空间分布特征,基本可以再现中国大范围区域内DTR下降的空间分布特征,对不同区域和不同季节DTR变化也有较好的模拟,以EC-Earth3模式的模拟能力最好。然而,单模式存在不同程度的高估或低估DTR变化的现象,多模式中位数集合能够模拟出DTR在年际变化和气候平均态变化中的一些特征,对于春季和冬季的模拟,多模式集合优于单模式模拟。
  • 图  1  中国六大区域分布

    Figure  1.  Six regional distributions in China

    图  2  CRU观测、多模式集合和28个气候模式在1901~2014年均气温日较差距平值的年际变化

    Figure  2.  Interannual variations of the CRU observation dataset, ensemble, and 28 climate models about annual Diurnal Temperature Range (DTR) anomalies from 1901 to 2014

    图  3  CMIP6模式模拟的1901~2014年气温日较差年际变化的泰勒图(红点Ref表示观测,扇形半径上的值表示模式相较于观测的标准差,扇形弧上的值表示模式与观测的相关系数,扇形内绿色虚线圆弧上的值表示模式与观测之间的均方根误差)

    Figure  3.  Taylor diagram of the interannual variation of the DTR simulated by CMIP6 models from 1901 to 2014. The red dot Ref represents the observation, the value on the fan-shaped radius represents the standard deviation of the model compared to the observation, the value on the fan-shaped arc represents the correlation coefficient between the model and the observation, and the value on the green dotted arc inside the fan-shaped represents the root-mean-square error between the model and the observation

    图  4  CMIP6模式模拟的1901~2014年气温日较差年际变化的TS评分(虚线表示多模式集合的评分线,可以直观地与单模式进行比较)

    Figure  4.  Taylor score of the interannual variation of the DTR simulated by CMIP6 models from 1901 to 2014. The dotted line represents the scoring line for the ensemble and can be compared intuitively with the single model

    5  CMIP6模式模拟与CRU观测的1941~1970年气温日较差气候平均态的空间分布

    5.  Climatology of the annual mean DTR from 1941 to 1970 simulated by CMIP6 models and CRU over China

    6  CMIP6模式模拟与CRU观测1985~2014年相较1955~1984年气温日较差气候平均态变化的空间分布(带点区域即为通过95%信度检验)

    6.  Change of the annual mean DTR from 1955–1984 to 1985–2014 simulated by CMIP6 models and CRU data over China. The dotted areas pass the 95% confidence test

    图  7  CMIP6模式模拟1941~1970年中国六大区域不同季节气温日较差变化的小提琴图(黄色五角星代表观测值,白色圆点代表中位数,上下边界代表最大、最小值,箱体的宽窄表示模式数据的分布密度,越宽表示数据越集中,越窄表示数据越稀疏)

    Figure  7.  Violin plot of the DTR variation in different seasons during 1941–1970 simulated by CMIP6 models over six regions of China (yellow five-pointed star represents the observed value, white dot represents the median, and the upper and lower boundaries represent the maximum and minimum values, respectively. The width of the box represents the distribution density of the model data. The wider the box is, the more concentrated the data are. The narrower the box is, the sparser the data are)

    表  1  28个CMIP6模式简介

    Table  1.   Description of the 28 CMIP6 models used in the study

    国家机构分辨率(纬度格点数×经度格点数)
    ACCESS-CM2澳大利亚CSIRO-ARCCSS144×192
    ACCESS-ESM1-5澳大利亚CSIRO145×192
    AWI-CM-1-1-MR德国AWI192 × 384
    AWI-ESM-1-1-LR德国AWI96×192
    BCC-CSM2-MR中国BCC160×320
    BCC-ESM1中国BCC64×128
    CanESM5加拿大CCCma64×128
    EC-Earth3瑞典EC-Earth-Consortium256×512
    EC-Earth3-AerChem瑞典EC-Earth-Consortium256×512
    EC-Earth3-Veg瑞典EC-Earth-Consortium256×512
    EC-Earth3-Veg-LR瑞典EC-Earth-Consortium160×320
    FGOALS-f3-L中国CAS180×288
    FGOALS-g3中国CAS80×180
    GFDL-CM4美国NOAA-GFDL180×288
    GFDL-ESM4美国NOAA-GFDL180×288
    GISS-E2-1-G美国NASA-GISS90×144
    INM-CM4-8俄罗斯INM120×180
    INM-CM5-0俄罗斯INM120×180
    IPSL-CM6A-LR法国IPSL143×144
    KACE-1-0-G韩国NIMS-KMA144×192
    KIOST-ESM韩国KIOST96×192
    MIROC6日本MIROC128×256
    MPI-ESM-1-2-HAM德国HAMMOZ-Consortium96×192
    MPI-ESM1-2-HR德国MPI-M192×384
    MPI-ESM1-2-LR德国MPI-M96×192
    MRI-ESM2-0日本MRI160×320
    NorESM2-MM挪威NCC192×288
    SAM0-UNICON韩国SNU192×288
    下载: 导出CSV
  • [1] Alexander L V, Zhang X, Peterson T C, et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation [J]. J. Geophys. Res., 111(D5): D05109. doi: 10.1029/2005JD006290
    [2] Bilbao J, Román R, De Miguel A. 2019. Temporal and spatial variability in surface air temperature and diurnal temperature range in Spain over the period 1950–2011 [J]. Climate, 7(1): 16. doi: 10.3390/cli7010016
    [3] Braganza K, Karoly D J, Arblaster J M. 2004. Diurnal temperature range as an index of global climate change during the twentieth century [J]. Geophys. Res. Lett., 31(13): L13217. doi: 10.1029/2004GL019998
    [4] 陈铁喜, 陈星. 2007. 近50年中国气温日较差的变化趋势分析 [J]. 高原气象, 26(1): 150−157. doi: 10.3321/j.issn:1000-0534.2007.01.018

    Chen T X, Chen X. 2007. Variation of diurnal temperature range in China in the past 50 years [J]. Plateau Meteorology (in Chinese), 26(1): 150−157. doi: 10.3321/j.issn:1000-0534.2007.01.018
    [5] 杜泽玉, 曹富强, 杨荣. 2021. 基于CRU资料的山西百年气温时空演变特征 [J]. 高原气象, 40(1): 123−132.

    Du Z Y, Cao F Q, Yang R. 2021. Spatial−temporal variation of air temperature based on CRU data in Shanxi from 1901 to 2016 [J]. Plateau Meteorology (in Chinese), 40(1): 123−132.
    [6] 丁一汇, 王会军. 2016. 近百年中国气候变化科学问题的新认识 [J]. 科学通报, 61: 1029−1041. doi: 10.1360/N972015-00638

    Ding Y H, Wang H J. 2016. Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China [J]. Chinese Science Bulletin (in Chinese), 61: 1029−1041. doi: 10.1360/N972015-00638
    [7] Easterling D R, Horton B, Jones P D, et al. 1997. Maximum and minimum temperature trends for the globe [J]. Science, 277(5324): 364−367. doi: 10.1126/science.277.5324.364
    [8] Fu Y H, Lu R Y, Guo D. 2018. Changes in surface air temperature over China under the 1.5 and 2.0 °C global warming targets [J]. Advances in Climate Change Research, 9(2): 112−119. doi: 10.1016/j.accre.2017.12.001
    [9] Hansen J, Sato M, Ruedy R. 1995. Long-term changes of the diurnal temperature cycle: Implications about mechanisms of global climate change [J]. Atmospheric Research, 37(1−3): 175−209. doi: 10.1016/0169-8095(94)00077-Q
    [10] Harris I, Osborn T J, Jones P, et al. 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset [J]. Scientific Data, 7(1): 109. doi: 10.1038/s41597-020-0453-3
    [11] Huang J P, Yu H P, Dai A G, et al. 2017. Drylands face potential threat under 2 °C global warming target [J]. Nature Climate Change, 7(6): 417−422. doi: 10.1038/nclimate3275
    [12] IPCC. 2013. Climate Change 2013: The Physical Science Basis [M]. Cambridge: Cambridge University Press, 1135pp. doi: 10.1017/CBO9781107415324
    [13] Jiang D B, Tian Z P. 2013. East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models [J]. Chinese Science Bulletin, 58(12): 1427−1435. doi: 10.1007/s11434-012-5533-0
    [14] Karl T R, Kukla G, Razuvayev V N, et al. 1991. Global warming: Evidence for asymmetric diurnal temperature change [J]. Geophys. Res. Lett., 18(12): 2253−2256. doi: 10.1029/91GL02900
    [15] Karl T R, Jones P D, Knight R W, et al. 1993. A new perspective on recent global warming: Asymmetric trends of daily maximum and minimum temperature [J]. Bulletin of the American Meteorological Society, 74(6): 1007−24. doi:10.1175/1520-0477(1993)074<1007:ANPORG>2.0.CO;2
    [16] 孔锋. 2020. 1961~2018年我国气温日较差日数的时空演变特征及区域差异 [J]. 浙江大学学报(理学版), 47(4): 422−434. doi: 10.3785/j.issn.1008-9497.2020.04.004

    Kong F. 2020. Spatial and temporal variation characteristics and regional differences of days of diurnal temperature range in China from 1961 to 2018 [J]. Journal of Zhejiang University (Science Edition) (in Chinese), 47(4): 422−434. doi: 10.3785/j.issn.1008-9497.2020.04.004
    [17] Li Y, Huang Y, Bergelson J, et al. 2010. Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana [J]. Proceedings of the National Academy of Sciences of the United States of America, 107(49): 21199−21204. doi: 10.1073/pnas.1007431107
    [18] 李佳瑞, 牛自耕, 冯岚, 等. 2020. CMIP5模式对长江和黄河流域极端气温指标的模拟与预估 [J]. 地球科学, 45(6): 1887−1904.

    Li J R, Niu Z G, Feng L, et al. 2020. Simulation and prediction of extreme temperature indices in Yangtze and Yellow River basins by CMIP5 models [J]. Earth Science (in Chinese), 45(6): 1887−1904.
    [19] 林朝晖, 杨笑宇, 吴成来, 等. 2018. CMIP5模式对中国东部夏季不同强度降水气候态和年代际变化的模拟能力评估 [J]. 气候与环境研究, 23(1): 1−25. doi: 10.3878/j.issn.1006-9585.2017.16207

    Lin Z H, Yang X Y, Wu C L, et al. 2018. Capability assessment of CMIP5 models in reproducing observed climatology and decadal changes in summer rainfall with different intensities over Eastern China [J]. Climatic and Environmental Research (in Chinese), 23(1): 1−25. doi: 10.3878/j.issn.1006-9585.2017.16207
    [20] 刘颖杰, 林而达. 2008. 气候变暖对中国不同地区农业的影响 [J]. 气候变化研究进展, 4(S1): 51−55. doi: 10.3969/j.issn.1673-1719.2008.z1.010

    Liu Y J, Lin E D. 2008. Impact of climate warming in the past 20 years on agriculture in different regions of China [J]. Climate Change Research (in Chinese), 4(S1): 51−55. doi: 10.3969/j.issn.1673-1719.2008.z1.010
    [21] Liu B H, Xu M, Henderson M, et al. 2004. Taking China’s temperature: Daily range, warming trends, and regional variations, 1955–2000 [J]. J. Climate, 17(22): 4453−4462. doi: 10.1175/3230.1
    [22] Luo N, Guo Y, Gao Z B, et al. 2020. Assessment of CMIP6 and CMIP5 model performance for extreme temperature in China [J]. Atmospheric and Oceanic Science Letters, 13(6): 589−597. doi: 10.1080/16742834.2020.1808430
    [23] Mitchell D, James R, Forster P M, et al. 2016. Realizing the impacts of a 1.5°C warmer world [J]. Nature Climate Change, 6(8): 735−737. doi: 10.1038/nclimate3055
    [24] New M, Hulme M, Jones P. 2000. Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate [J]. J. Climate, 13(13): 2217−2238. doi:10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2
    [25] Paaijmans K P, Blanford S, Bell A S, et al. 2010. Influence of climate on malaria transmission depends on daily temperature variation [J]. Proceedings of the National Academy of Sciences of the United States of America, 107(34): 15135−15139. doi: 10.1073/pnas.1006422107
    [26] Plantico M S, Karl T R, Kukla G, et al. 1990. Is recent climate change across the United States related to rising levels of anthropogenic greenhouse gases? [J]. J. Geophys. Res., 95(D10): 16617−16637. doi: 10.1029/JD095iD10p16617
    [27] Plummer N, Lin Z, Torok S. 1995. Trends in the diurnal temperature range over Australia since 1951 [J]. Atmospheric Research, 37(1): 79−86. doi: 10.1016/0169-8095(94)00070-T
    [28] Price C, Michaelides S, Pashiardis S, et al. 1999. Long term changes in diurnal temperature range in Cyprus [J]. Atmospheric Research, 51(2): 85−98. doi: 10.1016/S0169-8095(99)00022-8
    [29] 任余龙, 石彦军, 王劲松, 等. 2012. 英国CRU高分辨率格点资料揭示的近百年来青藏高原气温变化 [J]. 兰州大学学报(自然科学版), 48(6): 63−68. doi: 10.13885/j.issn.0455-2059.2012.06.022

    Ren Y L, Shi Y J, Wang J S, et al. 2012. An overview of temperature vrariations on the Qinghai-Tibetan Plateau in the recent hundred years using UK CRU high resolution grid data [J]. Journal of Lanzhou University (Natural Sciences) (in Chinese), 48(6): 63−68. doi: 10.13885/j.issn.0455-2059.2012.06.022
    [30] Reside A E, VanDerWal J J, Kutt A S, et al. 2010. Weather, not climate, defines distributions of Vagile bird species [J]. PLoS One, 5(10): e13569. doi: 10.1371/journal.pone.0013569
    [31] Roy S S, Balling Jr R C. 2005. Analysis of trends in maximum and minimum temperature, diurnal temperature range, and cloud cover over India [J]. Geophys. Res. Lett., 32(12): L12702. doi: 10.1029/2004GL022201
    [32] Schleussner C F, J Rogelj J, Schaeffer M, et al. 2016. Science and policy characteristics of the Paris Agreement temperature goal [J]. Nature Climate Change, 6(9): 827−835. doi: 10.1038/nclimate3096
    [33] Stone D, Weaver A. 2003. Factors contributing to diurnal temperature range trends in twentieth and twenty-first century simulations of the CCCma coupled model [J]. Climate Dyn., 20(5): 435−445. doi: 10.1007/s00382-002-0288-y
    [34] Sun X B, Ren G Y, You Q L, et al. 2019. Global diurnal temperature range (DTR) changes since 1901 [J]. Climate Dyn., 52(5−6): 3343−3356. doi: 10.1007/s00382-018-4329-6
    [35] 陶纯苇, 姜超, 孙建新. 2016. CMIP5模式对中国东北气候模拟能力的评估 [J]. 气候与环境研究, 21(3): 357−366. doi: 10.3969/j.issn.1673-503X.2010.03.001

    Tao C W, Jiang C, Sun J X. 2016. Evaluation of CMIP5 models performance on climate simulation in Northeast China [J]. Climatic and Environmental Research (in Chinese), 21(3): 357−366. doi: 10.3969/j.issn.1673-503X.2010.03.001
    [36] Thorne P W, Menne M J, Williams C N, et al. 2016. Reassessing changes in diurnal temperature range: A new data set and characterization of data biases [J]. J. Geophys. Res., 121(10): 5115−5137. doi: 10.1002/2015JD024583
    [37] Vasseur D A, DeLong J P, Gilbert B, et al. 2014. Increased temperature variation poses a greater risk to species than climate warming [J]. Proceedings of the Royal Society B: Biological Sciences, 281(1779): 20132612. doi: 10.1098/rspb.2013.2612
    [38] Wang K, Ye H, Chen F, et al. 2012. Urbanization effect on the diurnal temperature range: Different roles under solar dimming and brightening [J]. J. Climate, 25(3): 1022−1027. doi: 10.1175/JCLI-D-10-05030.1
    [39] 王绍武, 罗勇, 赵宗慈, 等. 2013. 气候模式 [J]. 气候变化研究进展, 9(2): 150−154. doi: 10.3969/j.issn.1673-1719.2013.02.011

    Wang S W, Luo Y, Zhao Z C, et al. 2013. Climate models [J]. Progressus Inquisitiones de Mutatione Climatis (in Chinese), 9(2): 150−154. doi: 10.3969/j.issn.1673-1719.2013.02.011
    [40] Wang B, Zheng L H, Liu D L, et al. 2018. Using multi‐model ensembles of CMIP5 global climate models to reproduce observed monthly rainfall and temperature with machine learning methods in Australia [J]. International Journal of Climatology, 38(13): 4891−4902. doi: 10.1002/joc.5705
    [41] 闻新宇, 王绍武, 朱锦红, 等. 2006. 英国CRU高分辨率格点资料揭示的20世纪中国气候变化 [J]. 大气科学, 30(5): 894−904. doi: 10.3878/j.issn.1006-9895.2006.05.18

    Wen X Y, Wang S W, Zhu J H, et al. 2006. An overview of China climate change over the 20th century using UK UEA/CRU high resolution grid data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(5): 894−904. doi: 10.3878/j.issn.1006-9895.2006.05.18
    [42] 吴芳营, 游庆龙, 谢文欣, 等. 2019. 全球变暖1.5℃和2℃阈值时青藏高原气温的变化特征 [J]. 气候变化研究进展, 15(2): 130−139. doi: 10.12006/j.issn.1673-1719.2018.175

    Wu F Y, You Q L, Xie W X, et al. 2019. Temperature change on the Tibetan Plateau under the global warming of 1.5 ℃ and 2 ℃ [J]. Climate Change Research (in Chinese), 15(2): 130−139. doi: 10.12006/j.issn.1673-1719.2018.175
    [43] Xu Y F, Li T, Shen S H, et al. 2019. Assessment of CMIP5 models based on the interdecadal relationship between the PDO and winter temperature in China [J]. Atmosphere, 10(10): 597. doi: 10.3390/atmos10100597
    [44] Zhao T B, Chen L, Ma Z G. 2014. Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models [J]. Chinese Science Bulletin, 59(4): 412−429. doi: 10.1007/s11434-013-0003-x
    [45] 周天军, 邹立维, 陈晓龙. 2019. 第六次国际耦合模式比较计划(CMIP6)评述 [J]. 气候变化研究进展, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193

    Zhou T J, Zou L W, Chen X L. 2019. Commentary on the coupled model intercomparison project phase 6 (CMIP6) [J]. Climate Change Research (in Chinese), 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  77
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-05
  • 网络出版日期:  2021-08-30
  • 刊出日期:  2022-01-25

目录

    /

    返回文章
    返回