Evalution on CMIP6 Model Simulation of the Diurnal Temperature Range over China
-
摘要: 利用CRU_TS v4.04观测数据作为验证,对28个CMIP6 (Coupled Model Intercomparison Project 6) 模式模拟中国区域内气温日较差(Diurnal Temperature Range, DTR)年际变化、气候平均态变化以及不同区域和不同季节尺度变化的能力进行评估。结果表明:在百年尺度上,CMIP6模式能够反映出年际变化中DTR下降的演变趋势,模式与观测之间的相关系数在0.1~0.7,均方根误差在0.6~1.5,Taylor 评分(Taylor Score, TS)在0.2~0.7,MRI-ESM2-0模式与观测之间的相关系数(0.65)最大,均方根误差(0.8)最小,TS(0.67)最高,模拟能力最好;在30年气候平均态尺度上,CMIP6模式符合观测呈现的DTR北方地区高、南方地区低,西部地区高、东部地区低,内陆地区高、沿海地区低,高原地区高、平原盆地地区低的空间分布特征,基本可以再现中国大范围区域内DTR下降的空间分布特征,对不同区域和不同季节DTR变化也有较好的模拟,以EC-Earth3模式的模拟能力最好。然而,单模式存在不同程度的高估或低估DTR变化的现象,多模式中位数集合能够模拟出DTR在年际变化和气候平均态变化中的一些特征,对于春季和冬季的模拟,多模式集合优于单模式模拟。Abstract: The ability of 28 CMIP6 (Coupled Model Intercomparison Project 6) models that simulate the interannual variation and change of the climate mean state of the Diurnal Temperature Range (DTR) in China and different regional and seasonal scales was evaluated by using the CRU_TS v4.04 observation data as the benchmark. The results showed that the CMIP6 models can reflect the declining trend of the DTR at a centennial time scale in the interannual variation. The correlation coefficient between the model and the observation is 0.1–0.7, root-mean-square error is 0.6–1.5, and Taylor Score (TS) is 0.2–0.7. The correlation coefficient between the MRI-ESM2-0 model and the observation is the highest (0.65), root-mean-square error (0.8) is the lowest, and TS (0.67) is the highest. This indicates that the MRI-ESM2-0 model has the best simulation ability. At a 30-year climate mean scale, the CMIP6 models accord with the observed spatial distribution characteristics of the DTR, which is high in northern China, low in southern China, high in western China, high in eastern China, high in inland China, low in coastal areas, high in the plateau, and low in the plain basin. CMIP6 models can basically reproduce the declining trend over a large area of China in the climate mean state, and the DTR variation in different regions and seasons are also well simulated, with the EC-Earth3 model exhibiting the best performance. However, the individual model is easy to overestimate or underestimate the DTR variation to some extent. The multi-model ensemble can simulate some characteristics of the DTR in the interannual variation and change of the climate mean state, which is better than the single model for the spring and winter simulation.
-
Key words:
- CMIP6 models /
- Diurnal temperature range /
- Model evaluation /
- Climatology /
- Interannual variation
-
图 3 CMIP6模式模拟的1901~2014年气温日较差年际变化的泰勒图(红点Ref表示观测,扇形半径上的值表示模式相较于观测的标准差,扇形弧上的值表示模式与观测的相关系数,扇形内绿色虚线圆弧上的值表示模式与观测之间的均方根误差)
Figure 3. Taylor diagram of the interannual variation of the DTR simulated by CMIP6 models from 1901 to 2014. The red dot Ref represents the observation, the value on the fan-shaped radius represents the standard deviation of the model compared to the observation, the value on the fan-shaped arc represents the correlation coefficient between the model and the observation, and the value on the green dotted arc inside the fan-shaped represents the root-mean-square error between the model and the observation
图 7 CMIP6模式模拟1941~1970年中国六大区域不同季节气温日较差变化的小提琴图(黄色五角星代表观测值,白色圆点代表中位数,上下边界代表最大、最小值,箱体的宽窄表示模式数据的分布密度,越宽表示数据越集中,越窄表示数据越稀疏)
Figure 7. Violin plot of the DTR variation in different seasons during 1941–1970 simulated by CMIP6 models over six regions of China (yellow five-pointed star represents the observed value, white dot represents the median, and the upper and lower boundaries represent the maximum and minimum values, respectively. The width of the box represents the distribution density of the model data. The wider the box is, the more concentrated the data are. The narrower the box is, the sparser the data are)
表 1 28个CMIP6模式简介
Table 1. Description of the 28 CMIP6 models used in the study
国家 机构 分辨率(纬度格点数×经度格点数) ACCESS-CM2 澳大利亚 CSIRO-ARCCSS 144×192 ACCESS-ESM1-5 澳大利亚 CSIRO 145×192 AWI-CM-1-1-MR 德国 AWI 192 × 384 AWI-ESM-1-1-LR 德国 AWI 96×192 BCC-CSM2-MR 中国 BCC 160×320 BCC-ESM1 中国 BCC 64×128 CanESM5 加拿大 CCCma 64×128 EC-Earth3 瑞典 EC-Earth-Consortium 256×512 EC-Earth3-AerChem 瑞典 EC-Earth-Consortium 256×512 EC-Earth3-Veg 瑞典 EC-Earth-Consortium 256×512 EC-Earth3-Veg-LR 瑞典 EC-Earth-Consortium 160×320 FGOALS-f3-L 中国 CAS 180×288 FGOALS-g3 中国 CAS 80×180 GFDL-CM4 美国 NOAA-GFDL 180×288 GFDL-ESM4 美国 NOAA-GFDL 180×288 GISS-E2-1-G 美国 NASA-GISS 90×144 INM-CM4-8 俄罗斯 INM 120×180 INM-CM5-0 俄罗斯 INM 120×180 IPSL-CM6A-LR 法国 IPSL 143×144 KACE-1-0-G 韩国 NIMS-KMA 144×192 KIOST-ESM 韩国 KIOST 96×192 MIROC6 日本 MIROC 128×256 MPI-ESM-1-2-HAM 德国 HAMMOZ-Consortium 96×192 MPI-ESM1-2-HR 德国 MPI-M 192×384 MPI-ESM1-2-LR 德国 MPI-M 96×192 MRI-ESM2-0 日本 MRI 160×320 NorESM2-MM 挪威 NCC 192×288 SAM0-UNICON 韩国 SNU 192×288 -
[1] Alexander L V, Zhang X, Peterson T C, et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation [J]. J. Geophys. Res., 111(D5): D05109. doi: 10.1029/2005JD006290 [2] Bilbao J, Román R, De Miguel A. 2019. Temporal and spatial variability in surface air temperature and diurnal temperature range in Spain over the period 1950–2011 [J]. Climate, 7(1): 16. doi: 10.3390/cli7010016 [3] Braganza K, Karoly D J, Arblaster J M. 2004. Diurnal temperature range as an index of global climate change during the twentieth century [J]. Geophys. Res. Lett., 31(13): L13217. doi: 10.1029/2004GL019998 [4] 陈铁喜, 陈星. 2007. 近50年中国气温日较差的变化趋势分析 [J]. 高原气象, 26(1): 150−157. doi: 10.3321/j.issn:1000-0534.2007.01.018Chen T X, Chen X. 2007. Variation of diurnal temperature range in China in the past 50 years [J]. Plateau Meteorology (in Chinese), 26(1): 150−157. doi: 10.3321/j.issn:1000-0534.2007.01.018 [5] 杜泽玉, 曹富强, 杨荣. 2021. 基于CRU资料的山西百年气温时空演变特征 [J]. 高原气象, 40(1): 123−132.Du Z Y, Cao F Q, Yang R. 2021. Spatial−temporal variation of air temperature based on CRU data in Shanxi from 1901 to 2016 [J]. Plateau Meteorology (in Chinese), 40(1): 123−132. [6] 丁一汇, 王会军. 2016. 近百年中国气候变化科学问题的新认识 [J]. 科学通报, 61: 1029−1041. doi: 10.1360/N972015-00638Ding Y H, Wang H J. 2016. Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China [J]. Chinese Science Bulletin (in Chinese), 61: 1029−1041. doi: 10.1360/N972015-00638 [7] Easterling D R, Horton B, Jones P D, et al. 1997. Maximum and minimum temperature trends for the globe [J]. Science, 277(5324): 364−367. doi: 10.1126/science.277.5324.364 [8] Fu Y H, Lu R Y, Guo D. 2018. Changes in surface air temperature over China under the 1.5 and 2.0 °C global warming targets [J]. Advances in Climate Change Research, 9(2): 112−119. doi: 10.1016/j.accre.2017.12.001 [9] Hansen J, Sato M, Ruedy R. 1995. Long-term changes of the diurnal temperature cycle: Implications about mechanisms of global climate change [J]. Atmospheric Research, 37(1−3): 175−209. doi: 10.1016/0169-8095(94)00077-Q [10] Harris I, Osborn T J, Jones P, et al. 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset [J]. Scientific Data, 7(1): 109. doi: 10.1038/s41597-020-0453-3 [11] Huang J P, Yu H P, Dai A G, et al. 2017. Drylands face potential threat under 2 °C global warming target [J]. Nature Climate Change, 7(6): 417−422. doi: 10.1038/nclimate3275 [12] IPCC. 2013. Climate Change 2013: The Physical Science Basis [M]. Cambridge: Cambridge University Press, 1135pp. doi: 10.1017/CBO9781107415324 [13] Jiang D B, Tian Z P. 2013. East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models [J]. Chinese Science Bulletin, 58(12): 1427−1435. doi: 10.1007/s11434-012-5533-0 [14] Karl T R, Kukla G, Razuvayev V N, et al. 1991. Global warming: Evidence for asymmetric diurnal temperature change [J]. Geophys. Res. Lett., 18(12): 2253−2256. doi: 10.1029/91GL02900 [15] Karl T R, Jones P D, Knight R W, et al. 1993. A new perspective on recent global warming: Asymmetric trends of daily maximum and minimum temperature [J]. Bulletin of the American Meteorological Society, 74(6): 1007−24. doi:10.1175/1520-0477(1993)074<1007:ANPORG>2.0.CO;2 [16] 孔锋. 2020. 1961~2018年我国气温日较差日数的时空演变特征及区域差异 [J]. 浙江大学学报(理学版), 47(4): 422−434. doi: 10.3785/j.issn.1008-9497.2020.04.004Kong F. 2020. Spatial and temporal variation characteristics and regional differences of days of diurnal temperature range in China from 1961 to 2018 [J]. Journal of Zhejiang University (Science Edition) (in Chinese), 47(4): 422−434. doi: 10.3785/j.issn.1008-9497.2020.04.004 [17] Li Y, Huang Y, Bergelson J, et al. 2010. Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana [J]. Proceedings of the National Academy of Sciences of the United States of America, 107(49): 21199−21204. doi: 10.1073/pnas.1007431107 [18] 李佳瑞, 牛自耕, 冯岚, 等. 2020. CMIP5模式对长江和黄河流域极端气温指标的模拟与预估 [J]. 地球科学, 45(6): 1887−1904.Li J R, Niu Z G, Feng L, et al. 2020. Simulation and prediction of extreme temperature indices in Yangtze and Yellow River basins by CMIP5 models [J]. Earth Science (in Chinese), 45(6): 1887−1904. [19] 林朝晖, 杨笑宇, 吴成来, 等. 2018. CMIP5模式对中国东部夏季不同强度降水气候态和年代际变化的模拟能力评估 [J]. 气候与环境研究, 23(1): 1−25. doi: 10.3878/j.issn.1006-9585.2017.16207Lin Z H, Yang X Y, Wu C L, et al. 2018. Capability assessment of CMIP5 models in reproducing observed climatology and decadal changes in summer rainfall with different intensities over Eastern China [J]. Climatic and Environmental Research (in Chinese), 23(1): 1−25. doi: 10.3878/j.issn.1006-9585.2017.16207 [20] 刘颖杰, 林而达. 2008. 气候变暖对中国不同地区农业的影响 [J]. 气候变化研究进展, 4(S1): 51−55. doi: 10.3969/j.issn.1673-1719.2008.z1.010Liu Y J, Lin E D. 2008. Impact of climate warming in the past 20 years on agriculture in different regions of China [J]. Climate Change Research (in Chinese), 4(S1): 51−55. doi: 10.3969/j.issn.1673-1719.2008.z1.010 [21] Liu B H, Xu M, Henderson M, et al. 2004. Taking China’s temperature: Daily range, warming trends, and regional variations, 1955–2000 [J]. J. Climate, 17(22): 4453−4462. doi: 10.1175/3230.1 [22] Luo N, Guo Y, Gao Z B, et al. 2020. Assessment of CMIP6 and CMIP5 model performance for extreme temperature in China [J]. Atmospheric and Oceanic Science Letters, 13(6): 589−597. doi: 10.1080/16742834.2020.1808430 [23] Mitchell D, James R, Forster P M, et al. 2016. Realizing the impacts of a 1.5°C warmer world [J]. Nature Climate Change, 6(8): 735−737. doi: 10.1038/nclimate3055 [24] New M, Hulme M, Jones P. 2000. Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate [J]. J. Climate, 13(13): 2217−2238. doi:10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2 [25] Paaijmans K P, Blanford S, Bell A S, et al. 2010. Influence of climate on malaria transmission depends on daily temperature variation [J]. Proceedings of the National Academy of Sciences of the United States of America, 107(34): 15135−15139. doi: 10.1073/pnas.1006422107 [26] Plantico M S, Karl T R, Kukla G, et al. 1990. Is recent climate change across the United States related to rising levels of anthropogenic greenhouse gases? [J]. J. Geophys. Res., 95(D10): 16617−16637. doi: 10.1029/JD095iD10p16617 [27] Plummer N, Lin Z, Torok S. 1995. Trends in the diurnal temperature range over Australia since 1951 [J]. Atmospheric Research, 37(1): 79−86. doi: 10.1016/0169-8095(94)00070-T [28] Price C, Michaelides S, Pashiardis S, et al. 1999. Long term changes in diurnal temperature range in Cyprus [J]. Atmospheric Research, 51(2): 85−98. doi: 10.1016/S0169-8095(99)00022-8 [29] 任余龙, 石彦军, 王劲松, 等. 2012. 英国CRU高分辨率格点资料揭示的近百年来青藏高原气温变化 [J]. 兰州大学学报(自然科学版), 48(6): 63−68. doi: 10.13885/j.issn.0455-2059.2012.06.022Ren Y L, Shi Y J, Wang J S, et al. 2012. An overview of temperature vrariations on the Qinghai-Tibetan Plateau in the recent hundred years using UK CRU high resolution grid data [J]. Journal of Lanzhou University (Natural Sciences) (in Chinese), 48(6): 63−68. doi: 10.13885/j.issn.0455-2059.2012.06.022 [30] Reside A E, VanDerWal J J, Kutt A S, et al. 2010. Weather, not climate, defines distributions of Vagile bird species [J]. PLoS One, 5(10): e13569. doi: 10.1371/journal.pone.0013569 [31] Roy S S, Balling Jr R C. 2005. Analysis of trends in maximum and minimum temperature, diurnal temperature range, and cloud cover over India [J]. Geophys. Res. Lett., 32(12): L12702. doi: 10.1029/2004GL022201 [32] Schleussner C F, J Rogelj J, Schaeffer M, et al. 2016. Science and policy characteristics of the Paris Agreement temperature goal [J]. Nature Climate Change, 6(9): 827−835. doi: 10.1038/nclimate3096 [33] Stone D, Weaver A. 2003. Factors contributing to diurnal temperature range trends in twentieth and twenty-first century simulations of the CCCma coupled model [J]. Climate Dyn., 20(5): 435−445. doi: 10.1007/s00382-002-0288-y [34] Sun X B, Ren G Y, You Q L, et al. 2019. Global diurnal temperature range (DTR) changes since 1901 [J]. Climate Dyn., 52(5−6): 3343−3356. doi: 10.1007/s00382-018-4329-6 [35] 陶纯苇, 姜超, 孙建新. 2016. CMIP5模式对中国东北气候模拟能力的评估 [J]. 气候与环境研究, 21(3): 357−366. doi: 10.3969/j.issn.1673-503X.2010.03.001Tao C W, Jiang C, Sun J X. 2016. Evaluation of CMIP5 models performance on climate simulation in Northeast China [J]. Climatic and Environmental Research (in Chinese), 21(3): 357−366. doi: 10.3969/j.issn.1673-503X.2010.03.001 [36] Thorne P W, Menne M J, Williams C N, et al. 2016. Reassessing changes in diurnal temperature range: A new data set and characterization of data biases [J]. J. Geophys. Res., 121(10): 5115−5137. doi: 10.1002/2015JD024583 [37] Vasseur D A, DeLong J P, Gilbert B, et al. 2014. Increased temperature variation poses a greater risk to species than climate warming [J]. Proceedings of the Royal Society B: Biological Sciences, 281(1779): 20132612. doi: 10.1098/rspb.2013.2612 [38] Wang K, Ye H, Chen F, et al. 2012. Urbanization effect on the diurnal temperature range: Different roles under solar dimming and brightening [J]. J. Climate, 25(3): 1022−1027. doi: 10.1175/JCLI-D-10-05030.1 [39] 王绍武, 罗勇, 赵宗慈, 等. 2013. 气候模式 [J]. 气候变化研究进展, 9(2): 150−154. doi: 10.3969/j.issn.1673-1719.2013.02.011Wang S W, Luo Y, Zhao Z C, et al. 2013. Climate models [J]. Progressus Inquisitiones de Mutatione Climatis (in Chinese), 9(2): 150−154. doi: 10.3969/j.issn.1673-1719.2013.02.011 [40] Wang B, Zheng L H, Liu D L, et al. 2018. Using multi‐model ensembles of CMIP5 global climate models to reproduce observed monthly rainfall and temperature with machine learning methods in Australia [J]. International Journal of Climatology, 38(13): 4891−4902. doi: 10.1002/joc.5705 [41] 闻新宇, 王绍武, 朱锦红, 等. 2006. 英国CRU高分辨率格点资料揭示的20世纪中国气候变化 [J]. 大气科学, 30(5): 894−904. doi: 10.3878/j.issn.1006-9895.2006.05.18Wen X Y, Wang S W, Zhu J H, et al. 2006. An overview of China climate change over the 20th century using UK UEA/CRU high resolution grid data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(5): 894−904. doi: 10.3878/j.issn.1006-9895.2006.05.18 [42] 吴芳营, 游庆龙, 谢文欣, 等. 2019. 全球变暖1.5℃和2℃阈值时青藏高原气温的变化特征 [J]. 气候变化研究进展, 15(2): 130−139. doi: 10.12006/j.issn.1673-1719.2018.175Wu F Y, You Q L, Xie W X, et al. 2019. Temperature change on the Tibetan Plateau under the global warming of 1.5 ℃ and 2 ℃ [J]. Climate Change Research (in Chinese), 15(2): 130−139. doi: 10.12006/j.issn.1673-1719.2018.175 [43] Xu Y F, Li T, Shen S H, et al. 2019. Assessment of CMIP5 models based on the interdecadal relationship between the PDO and winter temperature in China [J]. Atmosphere, 10(10): 597. doi: 10.3390/atmos10100597 [44] Zhao T B, Chen L, Ma Z G. 2014. Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models [J]. Chinese Science Bulletin, 59(4): 412−429. doi: 10.1007/s11434-013-0003-x [45] 周天军, 邹立维, 陈晓龙. 2019. 第六次国际耦合模式比较计划(CMIP6)评述 [J]. 气候变化研究进展, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193Zhou T J, Zou L W, Chen X L. 2019. Commentary on the coupled model intercomparison project phase 6 (CMIP6) [J]. Climate Change Research (in Chinese), 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193 -