Evaluation of Two Generation Rapid Refresh Assimilation Numerical Prediction Systems in North China Regional Air Traffic Management Bureau of CAAC
-
摘要: 民航华北空管气象中心自主研发了第一代快速更新循环同化数值预报系统(NMC-RAP)和更新的第二代快速循环同化数值预报系统(NMC-HRRR)。针对2020年和2021年6~8月华北区域3次大范围雷雨天气过程的雷达反射率的预报结果,从雷达回波的空间分布、航空雷暴临近预报系统(Aviation Thunderstorm Nowcasting System, ATNS)评分、主要机场对流预警的预报效果等角度,对两代快速更新循环同化数值预报系统的预报性能进行了对比分析。结果表明:1)两代系统均能较好体现雷达回波的空间分布特征,回波强度也与区域雷达拼图实况资料比较接近。对于强回波中心落区这样的关键预报,NMC-HRRR总能体现出更大的优势,与实况更吻合。2)两代系统的弱回波预报的ATNS评分均优于强回波。其中,NMC-HRRR 0~9 h内预报的强、弱回波评分整体较高,特别是0~360 min和第540分钟的强回波预报,显著优于NMC-RAP。3)NMC-HRRR在预报对飞行有影响的回波开始出现的时间方面优势明显。对5个主要机场强对流预警的整体评估,定量证明了NMC-HRRR相较NMC-RAP,在强、弱回波的定时、定点预报准确率及其时空分布的改进都是有显著效果的。
-
关键词:
- 民航气象 /
- 快速更新循环同化数值预报系统 /
- 雷达反射率 /
- 航空雷暴临近预报系统(ATNS)评分
Abstract: The first-generation rapid refresh assimilation numerical forecast system of North Meteorological Center (NMC-RAP) and the upgraded second generation system (NMC-HRRR, the High-Resolution Rapid Refresh assimilation numerical forecast system of North Meteorological Center) have been independently developed by the Meteorological Center of North China Regional Air Traffic Management Bureau of CAAC. The radar reflectivity forecasts of two generation systems are evaluated comprehensively for three large-scale thunderstorms in North China during June to August of 2020 and 2021, in terms of the spatial distribution, Aviation Thunderstorm Nowcasting System (ATNS) score, and severe convective warning of major airports. Results show that the spatial distribution characteristics are well captured by both forecast systems, and the intensity is also closer to the composite radar reflectivity observations. NMC-HRRR always performs better in critical forecasts, such as the coverage of strong reflectivity echo, which is more consistent with the observations. For the two generation systems, the ATNS scores of weak echoes are better than strong echoes. In general, the strong and weak echo scores of NMC-HRRR forecasts within 0−9 h are significantly better than NMC-RAP, especially for the strong echoes in 0−360 min and at the 540th minute. NMC-HRRR shows better forecasting in strong and weak echoes, and the timing when the echo that affects the flight. The total counts of occurrences of severe convective warning from five major airports quantitatively prove that NMC-HRRR shows effective improvements over NMC-RAP to forecast strong and weak echoes with better accuracy in time and space. -
表 1 NMC-RAP和NMC-HRRR系统2020年6月1日06:00起报的0~9 h雷达反射率预报结果的航空雷暴临近预报系统(ATNS)评分
Table 1. Aviation Thunderstorm Nowcasting System (ATNS) scores of radar reflectivity with 0−9 h forecasts from NMC-RAP and NMC-HRRR systems initialized at 0600 UTC 1 Jun 2020
预报时效/min NMC-RAP系统评分 NMC-HRRR系统评分 强回波 弱回波 强回波 弱回波 0 0.21 0.62 0.61 0.82 30 0.54 0.69 0.65 0.80 60 0.38 0.62 0.59 0.69 90 0.36 0.58 0.48 0.70 120 0.31 0.59 0.53 0.70 150 0.31 0.57 0.56 0.66 180 0.30 0.58 0.53 0.63 240 0.32 0.55 0.47 0.53 300 0.38 0.54 0.48 0.48 360 0.27 0.46 0.38 0.36 420 0.37 0.40 0.32 0.44 480 0.35 0.33 0.33 0.51 540 0.33 0.33 0.53 0.60 注:强回波≥35 dBZ,弱回波≥20 dBZ(包含强回波),下同。 表 2 同表1,但为2021年6月13日04:00起报的ATNS评分
Table 2. Same as Table 1, but for the ATNS scores initialized at 0400 UTC 13 Jun 2021
预报时效/min NMC-RAP系统评分 NMC-HRRR系统评分 强回波 弱回波 强回波 弱回波 0 0.09 0.27 0.77 0.73 30 0.35 0.34 0.75 0.70 60 0.43 0.39 0.61 0.69 90 0.45 0.42 0.37 0.70 120 0.36 0.42 0.46 0.66 150 0.36 0.40 0.43 0.60 180 0.27 0.37 0.46 0.62 240 0.26 0.33 0.44 0.60 300 0.18 0.34 0.33 0.50 360 0.27 0.36 0.32 0.45 420 0.33 0.45 0.22 0.39 480 0.20 0.36 0.26 0.45 540 0.17 0.31 0.19 0.40 表 3 同表1,但为2021年8月23日08:00起报的ATNS评分
Table 3. Same as Table 1, but for the ATNS scores initialized at 0800 UTC 23 Aug 2021
预报时效/min NMC-RAP系统评分 NMC-HRRR系统评分 强回波 弱回波 强回波 弱回波 0 0.08 0.51 0.37 0.73 30 0.44 0.67 0.34 0.71 60 0.38 0.60 0.19 0.50 90 0.31 0.55 0.28 0.51 120 0.22 0.51 0.29 0.56 150 0.22 0.48 0.36 0.61 180 0.30 0.49 0.41 0.65 240 0.34 0.47 0.32 0.52 300 0.44 0.50 0.56 0.61 360 0.59 0.50 0.72 0.60 420 0.55 0.48 0.68 0.54 480 0.52 0.52 0.68 0.50 540 0.46 0.51 0.62 0.46 表 4 实况和NMC-RAP系统、NMC-HRRR系统2020年6月1日06:00起报的0~9 h雷达反射率对华北区域5个主要机场的对流预警
Table 4. Severe convective warning of radar reflectivity at five airports in North China based on observations, and 0−9 h forecasts from NMC-RAP and NMC-HRRR systems initialized at 0600 UTC 1 Jun 2020
机场 来源 不同预报时效(单位:min)下的预警 0 30 60 90 120 150 180 240 300 360 420 480 540 首都 实况 弱 强 RAP 弱 HRRR 弱 强 大兴 实况 弱 弱 RAP HRRR 弱 弱 天津 实况 强 RAP 弱 HRRR 强 石家庄 实况 弱 弱 弱 RAP HRRR 弱 太原 实况 RAP HRRR 表 5 实况和NMC-RAP、NMC-HRRR 2020年6月1日06:00起报的0~9 h雷达反射率预报结果对华北区域5个主要机场的对流预警总和
Table 5. Counts of total severe convective warning of radar reflectivity at 5 airports in North China based on observations, and 0−9 h forecasts from NMC-RAP and NMC-HRRR systems initialized at 0600 UTC 1 Jun 2020
ATNS评分之和 弱回波 强回波 实况 6 2 NMC-RAP 2 0 NMC-HRRR 4 2 表 6 同表4,但为2021年6月13日04:00起报
Table 6. Same as Table 4, but initialized at 0400 UTC 13 Jun 2021
机场 来源 不同预报时效(单位:min)下的预警 0 30 60 90 120 150 180 240 300 360 420 480 540 首都 实况 强 弱 RAP 强 弱 HRRR 强 弱 大兴 实况 强 RAP 强 HRRR 强 天津 实况 强 弱 弱 强 强 RAP 弱 强 HRRR 强 弱 弱 弱 石家庄 实况 弱 弱 强 弱 弱 RAP 强 HRRR 强 弱 太原 实况 弱 弱 RAP HRRR 表 7 同表5,但为2021年6月13日04:00起报
Table 7. Same as Table 5, but initialized at 0400 UTC 13 Jun 2021
ATNS评分之和 弱回波 强回波 实况 9 6 NMC-RAP 2 4 NMC-HRRR 5 4 表 8 同表4,但为2021年8月23日08:00起报
Table 8. Same as Table 4, but initialized at 0800 UTC 23 Aug 2021
机场 来源 不同预报时效(单位:min)下的预警 0 30 60 90 120 150 180 240 300 360 420 480 540 首都 实况 弱 强 强 弱 RAP 弱 强 强 HRRR 弱 强 强 弱 大兴 实况 强 强 强 RAP 弱 强 弱 HRRR 强 强 天津 实况 弱 强 弱 强 弱 强 强 RAP 弱 弱 强 强 HRRR 弱 弱 弱 强 石家庄 实况 弱 弱 弱 弱 强 弱 弱 弱 弱 弱 RAP 弱 弱 弱 弱 HRRR 弱 弱 弱 弱 弱 太原 实况 弱 弱 RAP 弱 弱 HRRR 弱 弱 表 9 同表5,但为2021年8月23日08:00起报
Table 9. Same as Table 5, but initialized at 0800 UTC 23 Aug 2021
ATNS评分之和 弱回波 强回波 实况 16 10 NMC-RAP 11 5 NMC-HRRR 12 5 表 10 同表5,但为3次过程的总和
Table 10. Same as Table 5,but for total counts of three convective storms
ATNS评分之和 弱回波 强回波 实况 31 18 NMC-RAP 15 9 NMC-HRRR 21 11 -
[1] Alexander C R, Weygandt S, Benjamin S, et al. 2015. The 2015 Operational Upgrades to the Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) [C]// The 27th Conference on Weather Analysis and Forecasting/23rd Conference on Numerical Weather Prediction. Amer. Meteor. Soc., Phoenix, AZ, USA. [2] Benjamin S G, Dévényi D, Weygandt S S, et al. 2004. An hourly assimilation-forecast cycle: The RUC [J]. Mon. Wea. Rev., 132(2): 495−518. doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2 [3] Bodas-Salcedo A, Webb M J, Brooks M E, et al. 2008. Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities [J]. J. Geophys. Res. : Atmos., 113(D8): D00A13. doi: 10.1029/2007JD009620 [4] 陈葆德, 王晓峰, 李泓, 等. 2013. 快速更新同化预报的关键技术综述 [J]. 气象科技进展, 3(2): 29−35. doi: 10.3969/j.issn.2095-1973.2013.02.003Chen Baode, Wang Xiaofeng, Li Hong, et al. 2013. An overview of the key techniques in rapid refresh assimilation and forecast [J]. Advances in Meteorological Science and Technology (in Chinese), 3(2): 29−35. doi: 10.3969/j.issn.2095-1973.2013.02.003 [5] Ciach G J, Krajewski W F. 1999. On the estimation of radar rainfall error variance [J]. Advances in Water Resources, 22(6): 585−595. doi: 10.1016/S0309-1708(98)00043-8 [6] Davis C A, Ahijevych D A, Trier S B. 2002. Detection and prediction of warm season midtropospheric vortices by the rapid update cycle [J]. Mon. Wea. Rev., 130(1): 24−42. doi:10.1175/1520-0493(2002)130<0024:DAPOWS>2.0.CO;2 [7] 范水勇, 陈敏, 仲跻芹, 等. 2009. 北京地区高分辨率快速循环同化预报系统性能检验和评估 [J]. 暴雨灾害, 28(2): 119−125. doi: 10.3969/j.issn.1004-9045.2009.02.004Fan Shuiyong, Chen Min, Zhong Jiqin, et al. 2009. Performance tests and evaluations of Beijing local high-resolution rapid update cycle system [J]. Torrential Rain and Disasters (in Chinese), 28(2): 119−125. doi: 10.3969/j.issn.1004-9045.2009.02.004 [8] Gao J D, Stensrud D J. 2012. Assimilation of reflectivity data in a convective-scale, cycled 3DVar framework with hydrometeor classification [J]. J. Atmos. Sci., 69(3): 1054−1065. doi: 10.1175/JAS-D-11-0162.1 [9] Gao J D, Stensrud D J. 2014. Some observing system simulation experiments with a hybrid 3DEnVAR system for storm-scale radar data assimilation [J]. Mon. Wea. Rev., 142(9): 3326−3346. doi: 10.1175/MWR-D-14-00025.1 [10] Gao J D, Xue M, Brewster K, et al. 2004. A three-dimensional variational data analysis method with recursive filter for Doppler radars [J]. J. Atmos. Oceanic Technol., 21(3): 457−469. doi:10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2 [11] 勾亚彬, 刘黎平, 杨杰, 等. 2014. 基于雷达组网拼图的定量降水估测算法业务应用及效果评估 [J]. 气象学报, 72(4): 731−748. doi: 10.11676/qxxb2014.050Gou Yabin, Liu Liping, Yang Jie, et al. 2014. Operational application and evaluation of the quantitative precipitation estimates algorithm based on the multi-radar mosaic [J]. Acta Meteorologica Sinica (in Chinese), 72(4): 731−748. doi: 10.11676/qxxb2014.050 [12] Hamill T M, Snyder C. 2000. A hybrid ensemble Kalman filter-3D variational analysis scheme [J]. Mon. Wea. Rev., 128(8): 2905−2919. doi:10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2 [13] Hu M, Xue M, Brewster K. 2006. 3DVAR and cloud analysis with WSR-88D Level-II data for the prediction of the Fort Worth, Texas, Tornadic thunderstorms. Part I: Cloud analysis and its impact [J]. Mon. Wea. Rev., 134(2): 675−698. doi: 10.1175/MWR3092.1 [14] Huang Y, Zhang W, Xu C L, et al. 2019. The Establishment of Convective Weather Forecasting System Applied to Air Traffic Management in North China [C]// 2019 IEEE 1st International Conference on Civil Aviation Safety and Information Technology (ICCASIT). Kunming, China: IEEE, 435–439. doi: 10.1109/ICCASIT48058.2019.8973183 [15] Pan Y J, Xue M, Zhu K F, et al. 2018. A prototype regional GSI-based EnKF-variational hybrid data assimilation system for the rapid refresh forecasting system: Dual-resolution implementation and testing results [J]. Advances in Atmospheric Sciences, 35(5): 518−530. doi: 10.1007/s00376-017-7108-0 [16] 彭菊香, 李红莉, 崔春光. 2011. 华中区域LAPS中尺度分析场的检验与评估 [J]. 气象, 37(2): 170−176. doi: 10.7519/j.issn.1000-0526.2011.02.006Peng Juxiang, Li Hongli, Cui Chunguang. 2011. Verification and evaluation of LAPS analysis field in central China [J]. Meteor. Mon. (in Chinese), 37(2): 170−176. doi: 10.7519/j.issn.1000-0526.2011.02.006 [17] Shen H, Huang Y, Chen M, et al. 2019. Introduction to the short-term aviation weather forecasting system in North China [C]// The 19th Conference on Aviation, Range, and Aerospace Meteorology. Amer. Meteor. Soc., Phoenix, AZ, USA. [18] 苏翔, 袁慧玲, 朱跃建. 2021. 四种定量降水预报客观订正方法对比研究 [J]. 气象学报, 79(1): 132−149. doi: 10.11676/qxxb2020.071Su Xiang, Yuan Huiling, Zhu Yuejian. 2021. A comparative study of four objective quantitative precipitation forecast calibration methods [J]. Acta Meteorologica Sinica (in Chinese), 79(1): 132−149. doi: 10.11676/qxxb2020.071 [19] Sun J Z. 2005. Initialization and numerical forecasting of a supercell storm observed during STEPS [J]. Mon. Wea. Rev., 133(4): 793−813. doi: 10.1175/MWR2887.1 [20] Sun J Z, Crook N A. 1997. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments [J]. J. Atmos. Sci., 54(12): 1642−1661. doi:10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2 [21] 孙娟珍, 陈明轩, 范水勇. 2016. 雷达资料同化方法:回顾与前瞻 [J]. 气象科技进展, 6(3): 17−27. doi: 10.3969/j.issn.2095-1973.2016.03.002Sun Juanzhen, Chen Mingxuan, Fan Shuiyong. 2016. Radar data assimilation methods: Review and future perspective [J]. Advances in Meteorological Science and Technology (in Chinese), 6(3): 17−27. doi: 10.3969/j.issn.2095-1973.2016.03.002 [22] 唐文苑, 郑永光, 张小雯. 2018. 基于FSS的高分辨率模式华北对流预报能力评估 [J]. 应用气象学报, 29(5): 513−523. doi: 10.11898/1001-7313.20180501Tang Wenyuan, Zheng Yongguang, Zhang Xiaowen. 2018. FSS-based evaluation on convective weather forecasts in North China from high resolution models [J]. J. Appl. Meteor. Sci. (in Chinese), 29(5): 513−523. doi: 10.11898/1001-7313.20180501 [23] Tong M J, Xue M. 2005. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments [J]. Mon. Wea. Rev., 133(7): 1789−1807. doi: 10.1175/MWR2898.1 [24] Wang H L, Sun J Z, Fan S Y, et al. 2013a. Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events [J]. Journal of Applied Meteorology and Climatology, 52(4): 889−902. doi: 10.1175/JAMC-D-12-0120.1 [25] Wang H L, Sun J Z, Zhang X, et al. 2013b. Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing [J]. Mon. Wea. Rev., 141(7): 2224−2244. doi: 10.1175/MWR-D-12-00168.1 [26] 王珏, 冷亮, 吴涛. 2015. SWAN系统中QPE产品的应用评估 [J]. 气象科技, 43(3): 380−386. doi: 10.19517/j.1671-6345.2015.03.006Wang Jue, Leng Liang, Wu Tao. 2015. Evaluation of radar quantitative precipitation estimation in SWAN [J]. Meteorological Science and Technology (in Chinese), 43(3): 380−386. doi: 10.19517/j.1671-6345.2015.03.006 [27] 魏东, 尤凤春, 范水勇, 等. 2010. 北京快速更新循环预报系统(BJ-RUC)模式探空质量评估分析 [J]. 气象, 36(8): 72−80. doi: 10.7519/j.issn.1000-0526.2010.08.010Wei Dong, You Fengchun, Fan Shuiyong, et al. 2010. Assessment and analysis of sounding information obtained from Beijing rapid update cycle forecast system [J]. Meteorological Monthly (in Chinese), 36(8): 72−80. doi: 10.7519/j.issn.1000-0526.2010.08.010 [28] Xiao Q N, Kuo Y H, Sun J Z, et al. 2005. Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case [J]. J. Appl. Meteor. Climatol., 44(6): 768−788. doi: 10.1175/JAM2248.1 [29] 熊秋芬. 2011. GRAPES_Meso模式的降水格点检验和站点检验分析 [J]. 气象, 37(2): 185−193. doi: 10.7519/j.issn.1000-0526.2011.02.008Xiong Qiufen. 2011. Verification of GRAPES_Meso precipitation forecasts based on fine-mash and station datasets [J]. Meteorological Monthly (in Chinese), 37(2): 185−193. doi: 10.7519/j.issn.1000-0526.2011.02.008 [30] 许晨璐, 王建捷, 黄丽萍. 2017. 千米尺度分辨率下GRAPES-Meso4.0模式定量降水预报性能评估 [J]. 气象学报, 75(6): 851−876. doi: 10.11676/qxxb2017.068Xu Chenlu, Wang Jianjie, Huang Liping. 2017. Evaluation on QPF of GRAPES-Meso4.0 model at convection-permitting resolution [J]. Acta Meteorologica Sinica (in Chinese), 75(6): 851−876. doi: 10.11676/qxxb2017.068 [31] Xu Q. 1996. Generalized adjoint for physical processes with parameterized discontinuities. Part I: Basic issues and heuristic examples [J]. J. Atmos. Sci., 53(8): 1123−1142. doi:10.1175/1520-0469(1996)053<1123:gafppw>2.0.co;2 [32] 杨显玉, 文军, 牛广山, 等. 2020. 西北地区的快速更新循环同化预报系统性能检验和评估 [J]. 高原气象, 39(1): 90−101. doi: 10.7522/j.issn.1000-0534.2019.00010Yang Xianyu, Wen Jun, Niu Guangshan, et al. 2020. Performance tests and evaluations of northwest rapid update cycle prediction system [J]. Plateau Meteorology (in Chinese), 39(1): 90−101. doi: 10.7522/j.issn.1000-0534.2019.00010 [33] Zhou T J, Yu R C, Chen H M, et al. 2008. Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations [J]. J. Climate, 21(16): 3997−4010. doi: 10.1175/2008JCLI2028.1 -