高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1991~2019年中国农业生态系统旱涝脆弱性评估

李江南 丑洁明 赵卫星 李芫梦 徐源 孙铭扬 杨帆

李江南, 丑洁明, 赵卫星, 等. 2022. 1991~2019年中国农业生态系统旱涝脆弱性评估[J]. 气候与环境研究, 27(1): 19−32 doi: 10.3878/j.issn.1006-9585.2021.21073
引用本文: 李江南, 丑洁明, 赵卫星, 等. 2022. 1991~2019年中国农业生态系统旱涝脆弱性评估[J]. 气候与环境研究, 27(1): 19−32 doi: 10.3878/j.issn.1006-9585.2021.21073
LI Jiangnan, CHOU Jieming, ZHAO Weixing, et al. 2022. Droughts and Floods Vulnerability Assessment of China’s Agricultural Ecosystem from 1991 to 2019 [J]. Climatic and Environmental Research (in Chinese), 27 (1): 19−32 doi: 10.3878/j.issn.1006-9585.2021.21073
Citation: LI Jiangnan, CHOU Jieming, ZHAO Weixing, et al. 2022. Droughts and Floods Vulnerability Assessment of China’s Agricultural Ecosystem from 1991 to 2019 [J]. Climatic and Environmental Research (in Chinese), 27 (1): 19−32 doi: 10.3878/j.issn.1006-9585.2021.21073

1991~2019年中国农业生态系统旱涝脆弱性评估

doi: 10.3878/j.issn.1006-9585.2021.21073
基金项目: 国家重点基础研究发展计划项目2018YFC1509003,国家自然科学基金项目42075167
详细信息
    作者简介:

    李江南,女,1996年出生,硕士研究生,主要从事农业生态系统脆弱性研究。E-mail: 1342566581@qq.com

    通讯作者:

    丑洁明,E-mail: choujm@bnu.edu.cn

  • 中图分类号: P467

Droughts and Floods Vulnerability Assessment of China’s Agricultural Ecosystem from 1991 to 2019

Funds: National Key Research and Development Program of China (Grant 2018YFC1509003), National Natural Science Foundation of China (Grant 42075167)
  • 摘要: 近几十年来我国旱涝事件频发,同时农业是对气候变化最为敏感的产业部门,因此本文基于“敏感性—暴露度—适应力”脆弱性评估框架,选取敏感性、暴露度与适应力评价指标,结合层次分析法与熵权法确定指标权重,分别对1991~2019年我国农业生态系统干旱和洪涝敏感性、暴露度、适应力及脆弱性进行评估。结果表明:我国农业生态系统干旱高敏感地区分布在湖北、湖南等中南省份,而洪涝高敏感地区分布在沿海省份海南、上海和江苏,旱涝高暴露地区均分布在甘肃、河南、黑龙江,旱涝低适应力地区包括西南省份西藏、重庆、贵州和云南。总体而言,我国农业生态系统旱涝脆弱性呈现从中部向四周减弱趋势,中部省份河南和湖北属于旱涝高脆弱性水平,建议中部省份通过因地制宜调整农业生态结构,开发和采取针对旱涝灾害的应变种植、饲养和作物保护技术等措施来降低和适应其高脆弱性。
  • 图  1  1991~2019年中国农业生态系统旱涝脆弱性评价指标权重:(a)干旱敏感性;(b)干旱暴露度;(c)干旱适应力;(d)洪涝敏感性;(e)洪涝暴露度;(f)洪涝适应力

    Figure  1.  Evaluation of index weights of droughts and floods vulnerability of China's agricultural ecosystem from 1991 to 2019: (a) Drought sensitivity; (b) drought exposure; (c) drought adaptability; (d) flood sensitivity; (e) flood exposure; (f) flood adaptability

    图  2  1991~2019年中国农业生态系统旱涝脆弱性评价流程图

    Figure  2.  Flow chart of drought and flood vulnerability assessment of China's agricultural ecosystem from 1991 to 2019

    图  3  1991~2019年中国农业生态系统干旱敏感性、暴露度、适应力:(a)敏感性分级;(b)敏感性指数;(c)暴露度分级;(d)暴露度指数;(e)适应力分级;(f)适应力指数

    Figure  3.  Drought sensitivity, exposure, and adaptability of China’s agricultural ecosystem from 1991 to 2019: (a) Sensitivity classification; (b) sensitivity index; (c) exposure classification; (d) exposure index; (e) adaptability classification; (f) adaptability index

    图  4  1991~2019年中国农业生态系统干旱脆弱性:(a)脆弱性分级;(b)脆弱性指数

    Figure  4.  Drought vulnerability of China’s agricultural ecosystem from 1991 to 2019: (a) Vulnerability classification; (b)vulnerability index

    图  5  1991~2019年中国农业生态系统洪涝敏感性、暴露度、适应力:(a)敏感性分级;(b)敏感性指数;(c)暴露度分级;(d)暴露度指数;(e)适应力分级;(f)适应力指数

    Figure  5.  Flood sensitivity, exposure, and adaptability of China's agricultural ecosystem from 1991 to 2019: (a) Sensitivity classification; (b) sensitivity index; (c) exposure classification; (d) exposure index; (e) adaptability classification; (f) adaptability index

    图  6  1991~2019年中国农业生态系统洪涝脆弱性:(a)脆弱性分级;(b)脆弱性指数

    Figure  6.  Flood sensitivity, exposure, and adaptability of China's agricultural ecosystem from 1991 to 2019: (a) Vulnerability classification; (b) vulnerability index

    图  7  1991~2019年中国农业生态系统旱涝脆弱性

    Figure  7.  Droughts and floods vulnerability of China’s agricultural from 1991 to 2019

    表  1  数据来源与说明

    Table  1.   Data sources and description

    数据类别数据来源数据时间数据属性
    气候数据中国地面气候资料日值数据集(V3.0)

    http://data.cma.cn[2021-03-09]
    1991年~2019年涵盖逐日降水量、日平均气温等气候资料的中国699个气象站点数据
    年末常住人口、农业受灾面积、粮食播种面积、农用化肥使用量、农林牧渔生产总值、人均GDP、农业机械总动力、水库总库容量、除涝面积《中国统计年鉴》,中国国家统计局(https://data.stats.gov.cn[2021-03-09]1991年~2019年统计数据
    人均水资源量、农业生态用水量数据《中国统计年鉴》,中国国家统计局(https://data.stats.gov.cn[2021-03-09]2004年~2019年统计数据
    森林面积数据中国国家统计局
    https://data.stats.gov.cn[2021-03-09]),
    中国森林资源清查结果
    http://forest.ckcest.cn[2021-03-09]
    1991年~2019年统计数据
    下载: 导出CSV

    表  2  1991~2019年中国农业生态系统干旱脆弱性评价指标体系

    Table  2.   Drought vulnerability assessment indexes of China's agricultural ecosystem from 1991 to 2019

       目标层准则层指标(单位)指标说明与计算方法
    中国农业生态系统干旱脆弱性敏感性发生35°C以上高温概率(%)正向指标。利用所求年份中出现日最高温度≥35°C的累积年份数除以总年份数计算得到
    年均连续干旱日数(d)正向指标。根据气象干旱综合指数(MCI)、《气象干旱等级》(中国国家标准化管理委员会,2017)、廖要明和张存杰(2017),本研究中连续干旱日数是指逐日MCI达到中旱及以上干旱等级(重旱、特旱)的连续日数,发生连续15 d以上干旱概率即为所求年份中出现连续15 d及以上天数$ \mathrm{M}\mathrm{C}\mathrm{I} $达到中旱及以上干旱等级(重旱、特旱)的累积次数除以年份数计算得到
    每年发生连续15日以上干旱概率(%)
    暴露度年末常住人口(104正向指标。将数据正向标准化后的数值作为暴露度指标
    农业旱灾受灾面积(103hm)
    粮食播种面积(103hm)
    农业生态用水量(109m3
    适应力人均GDP(元/人)逆向指标。将数据逆向标准化后的数值作为适应力指标
    单位粮食播种面积农用化肥使用折纯量(t/hm)
    森林面积(104hm)
    人均水资源量(m3/人)
    农林牧渔生产总值(109元)
    农业机械总动力(104kW)
    水库总库容量(109m3
    注:农业生态用水量与人均水资源量数据存在缺失,故农业生态用水量与人均水资源量数据时间选取2004~2019年。
    下载: 导出CSV

    表  3  1991~2019年中国农业生态系统洪涝脆弱性评价指标体系

    Table  3.   Flood vulnerability assessment indexes of China's agricultural ecosystem from 1991 to 2019

      目标层准则层指标(单位)指标说明与计算方法
    中国农业生态系统洪涝脆弱性
    敏感性发生暴雨概率(%)正向指标。由所求年份中出现日降水量≥50 mm的累积年份数除以总年份数计算得到*
    年均暴雨日数(d)正向指标。由所求年份中出现日降水量≥50 mm的累积日数除以年份数计算得到*
    年均大雨日数(d)正向指标。由所求年份中出现日降水量在 (25 mm, 50 mm) 的累积日数除以年份数计算得到*
    暴露度年末常住人口(104正向指标。将数据正向标准化后的数值作为暴露度指标
    农业水灾受灾面积(103hm)
    粮食播种面积(103hm)
    适应力人均GDP(元/人)逆向指标。将数据逆向标准化后的数值作为适应力指标
    单位粮食播种面积农用化肥使用折纯量(t/hm)
    除涝面积(103hm)
    人均水资源量(m3
    森林面积(104hm)
    农业机械总动力(104kW)
    水库总库容量(109m3
    注:人均水资源量数据存在缺失,故人均水资源量数据时间选取2004~2019年;*表示计算方法依据《降水量等级》(中国国家标准化管理委员会,2012)。
    下载: 导出CSV

    表  4  1991~2019年中国农业生态系统旱涝脆弱性评价分级

    Table  4.   Assessment indexes of the classification system of China's agricultural ecosystem for droughts and floods vulnerability from 1991 to 2019

    评价分级敏感性暴露度适应力脆弱性
    (0,$ {\overline{x}}_{\mathrm{s}}-{\sigma }_{\mathrm{s}} $](0,$ {\overline{x}}_{\mathrm{e}}-{\sigma }_{\mathrm{e}} $][$ {\overline{x}}_{\mathrm{a}}+{\sigma }_{\mathrm{a}} $,1)(0,$ {\overline{x}}_{\mathrm{v}}-{\sigma }_{\mathrm{v}} $]
    ($ {\overline{x}}_{\mathrm{s}}-{\sigma }_{\mathrm{s}} $,$ {\overline{x}}_{\mathrm{s}}+{\sigma }_{\mathrm{s}} $)($ {\overline{x}}_{\mathrm{e}}-{\sigma }_{\mathrm{e}} $,$ {\overline{x}}_{\mathrm{e}}+{\sigma }_{\mathrm{e}} $)($ {\overline{x}}_{\mathrm{a}}-{\sigma }_{\mathrm{a}} $,$ {\overline{x}}_{\mathrm{a}}+{\sigma }_{\mathrm{a}} $)($ {\overline{x}}_{\mathrm{v}}-{\sigma }_{\mathrm{v}} $,$ {\overline{x}}_{\mathrm{v}}+{\sigma }_{\mathrm{v}} $)
    [$ {\overline{x}}_{\mathrm{s}}+{\sigma }_{\mathrm{s}} $,1]($ {\overline{x}}_{\mathrm{e}}+{\sigma }_{\mathrm{e}} $,1)(0,$ {\overline{x}}_{\mathrm{a}}-{\sigma }_{\mathrm{a}} $](0,$ {\overline{x}}_{\mathrm{v}}+{\sigma }_{\mathrm{v}} $,2)
    注:$ {\overline{x}}_{\mathrm{s}} $表示敏感性平均值,σs表示敏感性标准差;$ {\overline{x}}_{\mathrm{e}} $表示暴露度平均值,σe表示暴露度标准差;$ {\overline{x}}_{\mathrm{a}} $表示适应力平均值,σa表示适应力标准差;$ {\overline{x}}_{\mathrm{v}} $表示脆弱性平均值,σv表示脆弱性标准差。
    下载: 导出CSV

    表  5  1991~2019年中国农业生态系统旱涝脆弱性区域分布

    Table  5.   Droughts and floods vulnerability of China’s agricultural ecosystem from 1991 to 2019

    干旱高脆弱性干旱中脆弱性干旱低脆弱性
    洪涝高脆弱性河南、湖北江苏、云南、上海贵州、海南
    洪涝中脆弱性山西、湖南甘肃、四川、内蒙古、宁夏、陕西、重庆、广西、广东、
    福建、浙江、江西、北京、辽宁、黑龙江、山东、河北
    吉林
    洪涝低脆弱性安徽天津新疆、西藏、青海
    下载: 导出CSV
  • [1] 曹永强, 李玲慧, 路洁, 等. 2021. 基于SPEI的辽宁省玉米生育期干旱特征分析 [J]. 生态学报, 41(18): 7367−7379. doi: 10.5846/stxb202009112367

    Cao Yongqiang, Li Linghui, Lu Jie, et al. 2021. Analysis of drought characteristics of maize growth period in Liaoning Province based on SPEI [J]. Acta Ecologica Sinica (in Chinese), 41(18): 7367−7379. doi: 10.5846/stxb202009112367
    [2] 陈东东, 紫檀, 张玉芳. 2017. 基于水分盈亏指数的四川省小麦生育期干旱风险评估 [J]. 自然灾害学报, 26(4): 155−163. doi: 10.13577/j.jnd.2017.0418

    Chen Dongdong, Zi Tan, Zhang Yufang. 2017. Drought risk assessment based on crop water deficit index during wheat fertility periods in Sichuan Province [J]. Journal of Natural Disasters (in Chinese), 26(4): 155−163. doi: 10.13577/j.jnd.2017.0418
    [3] Chou J M, Xian T, Dong W J, et al. 2018. Regional temporal and spatial trends in drought and flood disasters in China and assessment of economic losses in recent years [J]. Sustainability, 11(1): 55. doi: 10.20944/preprints201811.0340.v1
    [4] Chou J M, Xian T, Zhao R Z, et al. 2019. Drought risk assessment and estimation in vulnerable eco-regions of China: Under the background of climate change [J]. Sustainability, 11(16): 4463. doi: 10.3390/su11164463
    [5] Crausbay S D, Ramirez A R, Carter S L, et al. 2017. Defining ecological drought for the twenty-first century [J]. Bull. Amer. Meteor. Soc., 98(12): 2543−2550. doi: 10.1175/BAMS-D-16-0292.1
    [6] 邓伟, 袁兴中, 孙荣, 等. 2016. 基于遥感的北方农牧交错带生态脆弱性评价 [J]. 环境科学与技术, 39(11): 174−181. doi: 10.3969/j.issn.1003-6504.2016.11.032

    Deng Wei, Yuan Xingzhong, Sun Rong, et al. 2016. Eco-vulnerability assessment based on remote sensing in the argo-pastoral ecotone of North China [J]. Environmental Science & Technology (in Chinese), 39(11): 174−181. doi: 10.3969/j.issn.1003-6504.2016.11.032
    [7] do Prado Tanure T M, Miyajima D N, Magalhães A S, et al. 2020. The impacts of climate change on agricultural production, land use and economy of the legal amazon region between 2030 and 2049 [J]. EconomiA, 21(1): 73−90. doi: 10.1016/j.econ.2020.04.001
    [8] Ercin E, Veldkamp T I E, Hunink J. 2021. Cross-border climate vulnerabilities of the European Union to drought [J]. Nature Communications, 12: 3322. doi: 10.1038/s41467-021-23584-0
    [9] 冯振环, 李书全. 2016. 京津冀都市圈发展的脆弱性研究与评估[M]. 北京: 清华大学出版社, 222

    Feng Zhenhuan, Li Shuquan. 2016. Research and Assessment of the Vulnerability of the Development of the Beijing–Tianjin–Hebei Metropolitan Area (in Chinese) [M]. Beijing: Tsinghua University Press, 222.
    [10] 付刚, 白加德, 齐月, 等. 2018. 基于GIS的北京市生态脆弱性评价 [J]. 生态与农村环境学报, 34(9): 830−839. doi: 10.11934/j.issn.1673-4831.2018.09.009

    Fu Gang, Bai Jiade, Qi Yue, et al. 2018. GIS-based assessment of Beijing's ecological vulnerability [J]. Journal of Ecology and Rural Environment (in Chinese), 34(9): 830−839. doi: 10.11934/j.issn.1673-4831.2018.09.009
    [11] 胡文海. 2015. 中部地区粮食生产比较优势分析与基地建设 [J]. 地理科学, 35(3): 293−298. doi: 10.13249/j.cnki.sgs.2015.03.293

    Hu Wenhai. 2015. Comparative advantage of grain production in central China and the base construction [J]. Scientia Geographica Sinica (in Chinese), 35(3): 293−298. doi: 10.13249/j.cnki.sgs.2015.03.293
    [12] IPCC. 2001. Climate Change 2001: The Scientific Basis [M]. Houghton J T, Ding Y, Griggs D J, et al. , Eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 881pp.
    [13] IPCC. 2014. Climate Change 2014: Synthesis Report [M]. Core W T, Pachauri R K, Meyer L A, et al. , Eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
    [14] Ishizaka A, Labib A. 2011. Review of the main developments in the analytic hierarchy process [J]. Expert Systems with Applications, 38(11): 14336−14345. doi: 10.1016/J.ESWA.2011.04.143
    [15] Kang H, Tao Wen D, Chang Y, et al. 2018. A feasible method for the division of ecological vulnerability and its driving forces in southern Shaanxi [J]. Journal of Cleaner Production, 205: 619−628. doi: 10.1016/j.jclepro.2018.09.109
    [16] 李柏贞, 周广胜. 2014. 干旱指标研究进展 [J]. 生态学报, 34(5): 1043−1052. doi: 10.5846/stxb201210201457

    Li Baizhen, Zhou Guangsheng. 2014. Advance in the study on drought index [J]. Acta Ecologica Sinica (in Chinese), 34(5): 1043−1052. doi: 10.5846/stxb201210201457
    [17] 李朝奎, 李吟, 汤国安, 等. 2012. 基于文献计量分析法的中国生态脆弱性研究进展 [J]. 湖南科技大学学报(社会科学版), 15(4): 91−94. doi: 10.3969/j.issn.1672-7835.2012.04.020

    Li Chaokui, Li Yin, Tang Guoan, et al. 2012. Research progress of ecological vulnerability based on metrological analysis of literatures in China [J]. Journal of Hunan University of Science and Technology (Social Science Edition) (in Chinese), 15(4): 91−94. doi: 10.3969/j.issn.1672-7835.2012.04.020
    [18] Li Y C, Xiong W, Hu W, et al. 2015. Integrated assessment of China’s agricultural vulnerability to climate change: A multi-indicator approach [J]. Climatic Change, 128(3): 355−366. doi: 10.1007/s10584-014-1165-5
    [19] Li Z W, Zeng G G, Zhang H, et al. 2007. The integrated eco-environment assessment of the red soil hilly region based on GIS-A case study in Changsha city, China [J]. Ecological Modelling, 202(3): 540−546.
    [20] 廖要明, 张存杰. 2017. 基于MCI的中国干旱时空分布及灾情变化特征 [J]. 气象, 43(11): 1402−1409. doi: 10.7519/j.issn.1000-0526.2017.11.009

    Liao Yaoming, Zhang Cunjie. 2017. Spatio-temporal distribution Characteristics and disaster change of drought in China based on meteorological drought composite index [J]. Meteorological Monthly (in Chinese), 43(11): 1402−1409. doi: 10.7519/j.issn.1000-0526.2017.11.009
    [21] 马骏. 2014. 三峡库区重庆段生态脆弱性动态评价 [D]. 西南大学硕士学位论文. Ma Jun. 2014. Dynamic evaluation of ecological vulnerability in the Three Gorges Reservoir region in Chongqing section, China [D] . M. S. thesis (in Chinese), Southwest University.
    [22] Mekonnen Z, Woldeamanuel T, Kassa H. 2019. Socio-ecological vulnerability to climate change/variability in central rift valley, Ethiopia [J]. Advances in Climate Change Research, 10(1): 9−20. doi: 10.1016/j.accre.2019.03.002
    [23] 孟清, 白红英, 赵婷, 等. 2020. 秦岭山地气候变化的地形效应 [J]. 山地学报, 38(2): 180−189. doi: 10.16089/j.cnki.1008-2786.000500

    Meng Qing, Bai Hongying, Zhao Ting, et al. 2020. Topographic characteristic of climate change in the Qinling Mountains, China [J]. Mountain Research (in Chinese), 38(2): 180−189. doi: 10.16089/j.cnki.1008-2786.000500
    [24] 潘高峰, 汪本福, 陈波, 等. 2021. 播期对鄂中北地区不同类型粳稻产量、生育期及温光利用的影响 [J]. 作物杂志, (4): 105−111. doi: 10.16035/j.issn.1001-7283.2021.04.016

    Pan Gaofeng, Wang Benfu, Chen Bo, et al. 2021. Effects of seeding date on yield, growth period and utilization of temperature and sunshine of different types of japonica rice in North Central of Hubei Province [J]. Crops (in Chinese), (4): 105−111. doi: 10.16035/j.issn.1001-7283.2021.04.016
    [25] Saaty T L. 1988. What is the analytic hierarchy process? [C]//Mathematical Models for Decision Support. Berlin, Heidelberg: Springer, 48: 109–121. doi: 10.1007/978-3-642-83555-1_5
    [26] Schlenker W, Roberts M J. 2009. Nonlinear temperature effects indicate severe damages to U. S. crop yields under climate change [J]. Proceedings of the National Academy of Sciences of the United States of America, 106(37): 15594−15598. doi: 10.1073/pnas.0906865106
    [27] Schröter D, Polsky C, Patt A G. 2005. Assessing vulnerabilities to the effects of global change: An eight-step approach [J]. Mitigation and Adaptation Strategies for Global Change, 10: 573−595. doi: 10.1007/s11027-005-6135-9
    [28] Seyedmohammadi J, Sarmadian F, Jafarzadeh A A, et al. 2019. Development of a model using matter element, AHP and GIS techniques to assess the suitability of land for agriculture [J]. Geoderma, 352: 80−95. doi: 10.1016/j.geoderma.2019.05.046
    [29] Tessema I, Simane B. 2019. Vulnerability analysis of smallholder farmers to climate variability and change: An agroecological system-based approach in the Fincha’a sub-basin of the upper Blue Nile basin of Ethiopia [J]. Ecological Processes, 8(1): 49−66. doi: 10.1186/s13717-019-0201-9
    [30] Thiault L, Mora C, Cinner J E, et al. 2019. Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries [J]. Science Advances, 5(11): eaaw9976. doi: 10.1126/sciadv.aaw9976
    [31] Turner B L, Kasperson R E, Matson P A, et al. 2003. A framework for vulnerability analysis in sustainability science [J]. Proceedings of the National Academy of Sciences of the United States of America, 100(14): 8074−8079. doi: 10.1073/pnas.1231335100
    [32] 王茜. 2020. 基于AHP&熵权法的新疆叶城县旅游扶贫效果研究 [D]. 塔里木大学硕士学位论文. Wang Qian. 2020. The effect of tourism poverty alleviation at Yecheng County in Xinjiang: Based on AHP & entropy [D] . M. S. thesis (in Chinese), Tarim University.
    [33] Wang Q, Liu Y Y, Zhang Y Z, et al. 2019. Assessment of spatial agglomeration of agricultural drought disaster in China from 1978 to 2016 [J]. Scientific Reports, 9: 14393. doi: 10.1038/s41598-019-51042-x
    [34] 王明全, 王金达, 刘景双. 2008. 基于主成分分析和熵权的吉林西部生态承载力演变 [J]. 中国科学院研究生院学报, 25(6): 764−770.

    Wang Mingquan, Wang Jinda, Liu Jingshuang. 2008. Evolution study on the ecological carrying capacity of West Jilin Province based on the principal component analysis and entropy weight method [J]. Journal of the Graduate School of the Chinese Academy of Sciences (in Chinese), 25(6): 764−770.
    [35] 王晓军, 程绍敏. 2009. 西藏主要气候特征分析 [J]. 高原山地气象研究, 29(4): 81−84. doi: 10.3969/j.issn.1674-2184.2009.04.014

    Wang Xiaojun, Cheng Shaomin. 2009. Analysis of major climate characteristics in Tibet [J]. Plateau and Mountain Meteorology Research (in Chinese), 29(4): 81−84. doi: 10.3969/j.issn.1674-2184.2009.04.014
    [36] 吴朋飞, 李娟, 费杰. 2012. 明代河南大水灾城洪涝灾害时空特征分析 [J]. 干旱区资源与环境, 26(5): 13−17.

    Wu Pengfei, Li Juan, Fei Jie. 2012. The characteristics of the urban flood disasters in Henan Province in Ming Dynasty [J]. Journal of Arid Land Resources and Environment (in Chinese), 26(5): 13−17.
    [37] 吴绍洪, 潘韬, 刘燕华, 等. 2017. 中国综合气候变化风险区划 [J]. 地理学报, 72(1): 3−17. doi: 10.11821/dlxb201701001

    Wu Shaohong, Pan Tao, Liu Yanhua, et al. 2017. Comprehensive climate change risk regionalization of China [J]. Acta Geographica Sinica (in Chinese), 72(1): 3−17. doi: 10.11821/dlxb201701001
    [38] 徐广才, 康慕谊, 贺丽娜, 等. 2009. 生态脆弱性及其研究进展 [J]. 生态学报, 29(5): 2578−2588. doi: 10.3321/j.issn:1000-0933.2009.05.047

    Xu Guangcai, Kang Muyi, He Li’na, et al. 2009. Advances in research on ecological vulnerability [J]. Acta Ecologica Sinica (in Chinese), 29(5): 2578−2588. doi: 10.3321/j.issn:1000-0933.2009.05.047
    [39] Xu Y Y, Sun J L, Zhang J Q, et al. 2012. Combining AHP with GIS in synthetic evaluation of environmental suitability for living in China’s 35 major cities [J]. International Journal of Geographical Information Science, 26(9): 1603−1623. doi: 10.1080/13658816.2011.642800
    [40] 严俊. 2018. 基于作物水分亏缺指数的辽宁省玉米干旱时空变化特征分析[D]. 沈阳农业大学硕士学位论文, 57pp.

    Yan Jun. 2018. Analysis of spatio−temporal variations of maize drought in Liaoning province based on crop water deficit index [D]. M. S. thesis (in Chinese), Shenyang Agricultural University, 57pp.
    [41] 于贵瑞, 徐兴良, 王秋凤, 等. 2017. 全球变化对生态脆弱区资源环境承载力的影响研究 [J]. 中国基础科学, 19(6): 19−23. doi: 10.3969/j.issn.1009-2412.2017.06.004

    Yu Guirui, Xu Xingliang, Wang Qiufeng, et al. 2017. Study on the effects of global change on resources and environment carrying capacity in ecological fragile zones in China [J]. China Basic Science (in Chinese), 19(6): 19−23. doi: 10.3969/j.issn.1009-2412.2017.06.004
    [42] 赵艳霞, 何磊, 刘寿东, 等. 2007. 农业生态系统脆弱性评价方法 [J]. 生态学杂志, 26(5): 754−758. doi: 10.3321/j.issn:1000-4890.2007.05.026

    Zhao Yanxia, He Lei, Liu Shoudong, et al. 2007. Evaluation method of agro-ecosystem vulnerability [J]. Chinese Journal of Ecology (in Chinese), 26(5): 754−758. doi: 10.3321/j.issn:1000-4890.2007.05.026
    [43] 中华人民共和国国家统计局. 2021. 中国统计年鉴[M]. 北京: 中国统计出版社, 945pp.

    National Bureau of Statistics of the People's Republic of China. 2021. China Statistical Yearbook (in Chinese)[M]. Beijing: China Statistics Press, 945pp.
    [44] 中国国家标准化管理委员会. 2012. GB/T 28592–2012 降水量等级 [S]. 北京: 中国标准出版社. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. 2012. GB/T 28592–2012 Grade of precipitation (in Chinese) [S]. Beijing: Standards Press of China.
    [45] 中国国家标准化管理委员会. 2017. GB/T 20481–2017 气象干旱等级 [S]. 北京: 中国标准出版社. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. 2017. GB/T 20481–2017 Grades of meteorological drought (in Chinese) [S]. Beijing: Standards Press of China.
    [46] 周亮广, 梁虹. 2006. 基于主成分分析和熵的喀斯特地区水资源承载力动态变化研究—以贵阳市为例 [J]. 自然资源学报, 21(5): 827−833. doi: 10.3321/j.issn:1000-3037.2006.05.017

    Zhou Liangguang, Liang Hong. 2006. A study on the evolution of water resource carrying capacity in Karst area based on component analysis and entropy [J]. Journal of Natural Resources (in Chinese), 21(5): 827−833. doi: 10.3321/j.issn:1000-3037.2006.05.017
    [47] 周文华, 王如松. 2005. 基于熵权的北京城市生态系统健康模糊综合评价 [J]. 生态学报, 25(12): 3244−3251. doi: 10.3321/j.issn:1000-0933.2005.12.019

    Zhou Wenhua, Wang Rusong. 2005. An entropy weight approach on the fuzzy synthetic assessment of Beijing urban ecosystem health, China [J]. Acta Ecologica Sinica (in Chinese), 25(12): 3244−3251. doi: 10.3321/j.issn:1000-0933.2005.12.019
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  42
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 网络出版日期:  2021-12-15
  • 刊出日期:  2022-01-25

目录

    /

    返回文章
    返回