高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地表热力非均匀性对近地层相似理论适用性影响的大涡模拟

黄慧珊 刘少锋 刘锐

黄慧珊, 刘少锋, 刘锐. 2022. 地表热力非均匀性对近地层相似理论适用性影响的大涡模拟[J]. 气候与环境研究, 27(4): 480−494 doi: 10.3878/j.issn.1006-9585.2021.21075
引用本文: 黄慧珊, 刘少锋, 刘锐. 2022. 地表热力非均匀性对近地层相似理论适用性影响的大涡模拟[J]. 气候与环境研究, 27(4): 480−494 doi: 10.3878/j.issn.1006-9585.2021.21075
HUANG Huishan, LIU Shaofeng, LIU Rui. 2022. Large Eddy Simulation of the Impacts of Surface Heating Heterogeneity on the Applicability of Similarity Theory in the Surface Layer [J]. Climatic and Environmental Research (in Chinese), 27 (4): 480−494 doi: 10.3878/j.issn.1006-9585.2021.21075
Citation: HUANG Huishan, LIU Shaofeng, LIU Rui. 2022. Large Eddy Simulation of the Impacts of Surface Heating Heterogeneity on the Applicability of Similarity Theory in the Surface Layer [J]. Climatic and Environmental Research (in Chinese), 27 (4): 480−494 doi: 10.3878/j.issn.1006-9585.2021.21075

地表热力非均匀性对近地层相似理论适用性影响的大涡模拟

doi: 10.3878/j.issn.1006-9585.2021.21075
基金项目: 国家自然科学基金41875128,国家重点研发计划项目2017YFA0604300,南方海洋科学与工程广东省实验室(珠海)创新团队建设项目311021009
详细信息
    作者简介:

    黄慧珊,女,1996年出生,硕士研究生,主要从事陆气相互作用研究。E-mail:huanghsh8@mail2.sysu.edu.cn

    通讯作者:

    刘少锋,E-mail: liushaof5@mail.sysu.edu.cn

  • 中图分类号: P404

Large Eddy Simulation of the Impacts of Surface Heating Heterogeneity on the Applicability of Similarity Theory in the Surface Layer

Funds: National Natural Science Foundation of China (NSFC, Grant 41875128), National Key Research and Development Program of China (Grant 2017YFA0604300), Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant 311021009)
  • 摘要: 利用非均匀地表加热的大涡模拟试验,研究了不稳定条件下地表热力非均匀性对近地层相似理论适用性的影响。结果发现,边界层的平均廓线基本不受地表热力非均匀性的影响。进一步分析发现,较大尺度的地表非均匀加热可以激发出有组织的大尺度次级环流,冷暖斑块的通量直到边界层上部才混合均匀;而当地表非均匀尺度较小时,次级环流难以形成有组织的结构,冷暖斑块的通量很快就可以混合均匀。然而,不管是哪种尺度的非均匀地表,非均匀斑块间的平流都对各斑块近地层结构产生重要影响,进而斑块近地层通量—梯度关系与相似理论产生偏差,其中风速梯度关系的偏差更为明显。最后,对目前大气模式中常用的基于相似理论的次网格非均匀地表通量参数化方法——Mosaic方法提出了改进思路。
  • 图  1  非均匀试验(a)Het_L、(b)Het_M、(c)Het_S的地表感热通量分布。黑色区域和白色区域的感热通量分别为0.11 K m/s和0.01 K m/s

    Figure  1.  Distributions of surface sensible heat flux of the three heterogeneous LES experiments (a) Het_L, (b) Het_M, and (c) Het_S. The sensible heat fluxes in the black and white areas are 0.11 K m/s and 0.01 K m/s, respectively

    图  2  试验Het_L冷斑块(左列)、暖斑块(右列)上的高度—时间剖面:(a1、a2)垂直风;(b1、b2)水平u风异常;(c1、c2)水平v

    Figure  2.  Height−time profiles on the cold (left) and warm (right) patches of experiment Het_L: (a1, a2) Vertical wind; (b1, b2) horizontal u wind anomaly; (c1, c2) horizontal v wind

    图  3  非均匀试验(a1、a2)Het_L、(b1、b2)Het_M和(c1、c2)Het_S动量通量(上)和感热通量(下)随高度分布情况。黑色、蓝色和红色实线分别代表区域平均值、冷斑块平均值和暖斑块平均值

    Figure  3.  Distributions of momentum flux (above) and sensible heat flux (below) with height of the heterogeneous experiments (a1, a2) Het_L, (b1, b2) Het_M, and (c1, c2) Het_S. Solid black, blue, and red lines represent grid averages, cold patch averages, and warm patch averages, respectively

    图  4  非均匀试验(a1、a2)Het_L、(b1、b2)Het_M和(c1、c2)Het_S的摩擦速度(左列)和温度尺度(右列)随时间的变化情况。黑色、蓝色和红色实线分别代表网格平均值、冷斑块平均值和暖斑块平均值

    Figure  4.  Time series of friction velocity (left) and temperature scale (right) of the heterogeneous LES experiments: (a1, a2) Het_L; (b1, b2) Het_M; (c1, c2) Het_S. Solid lines in black, blue, and red are grid averages, cold patch averages, and warm patch averages, respectively

    图  5  非均匀试验(a1−a4)Het_L、(b1−b4)Het_M、(c1−c4)Het_S在不同方案中的Obukhov长度随时间分布情况。黑色、蓝色和红色实线分别代表网格平均值、冷斑块平均值和暖斑块平均值

    Figure  5.  Time series of Obukhov Length of the heterogeneous LES experiments according to (a1−a4) Het_L, (b1−b4) Het_M, and (c1−c4) Het_S with different schemes. The solid lines in black, blue and red are grid averages, cold patch averages, and warm patch averages, respectively

    图  6  各个试验根据方案S1计算得到的(a)无量纲风速梯度和(b)无量纲温度梯度与稳定度参数(z/L)之间的关系。黑色虚线是Högström(1996)提出的经验曲线

    Figure  6.  Dimensionless (a) wind gradient and (b) temperature gradient against stability parameter (z/L) according to scheme S1 of the four LES experiments. The dashed lines are the empirical curves suggested by Högström (1996)

    图  7  试验Het_L根据不同方案计算得到的无量纲风速梯度与稳定度参数(z/L)之间的关系:(a)方案S2;(b)方案S3;(c)方案S4;(d)方案S5。黑色虚线是Högström(1996) 提出的经验曲线。黑色的点代表网格平均值(方案S1),蓝色和红色的点分别代表冷暖斑块在不同高度上的值

    Figure  7.  Dimensionless wind gradient against stability parameter (z/L) of experiment Het_L according to (a) S2, (b) S3, (c) S4, and (d) S5 schemes. The dashed lines are the empirical curves suggested by Högström(1996). The black dots are the grid averages (Scheme S1), and the blue and red dots are the warm and cold patch averages with different heights

    图  8  同图7,但为试验Het_M

    Figure  8.  As Fig. 7, but for experiment Het_M

    图  9  同图7,但为试验Het_S

    Figure  9.  As Fig. 7, but for experiment Het_S

    图  10  试验Het_L根据(a)方案S2、(b)方案S3、(c)方案S4、(d)方案S5计算得到的无量纲温度梯度与稳定度参数(z/L)之间的关系。黑色虚线是Högström(1996) 提出的经验曲线。黑色的点代表网格平均值(方案S1),蓝色和红色的点分别代表冷暖斑块在不同高度上的值

    Figure  10.  Dimensionless temperature gradient against stability parameter (z/L) of experiment Het_L according to (a) S2, (b) S3, (c) S4, and (d) S5 scheme. The dashed lines are the empirical curves suggested by Högström(1996). The black dots are the grid averages (Scheme S1), and the blue and red dots are the warm and cold patch averages with different heights

    图  11  同图10,但为试验Het_M

    Figure  11.  As Fig. 10, but for experiment Het_M

    图  12  同图10,但为试验Het_S

    Figure  12.  Same as Fig. 10, but for experiment Het_S

    表  1  大涡模拟试验设计方案

    Table  1.   Settings of LES experiments

    试验
    名称
    区域的
    边长/m
    背景风
    速/m s−1
    地表热通量/K m s−1非均匀斑
    块尺度/m
    区域冷斑块暖斑块
    Hom200040.06
    Het_L200040.060.010.111000
    Het_M200040.060.010.11200
    Het_S200040.060.010.1140
    下载: 导出CSV

    表  2  5种通量—梯度关系计算方案

    Table  2.   Five flux-gradient relationship calculation schemes.

    参数方案
    S1S2S3S4S5
    摩擦速度(u*GPPPP
    温度尺度(θ*GPPPP
    平均风速梯度($ \partial\overline u / \partial z$)GPPPP
    平均温度梯度($\partial\overline \theta / \partial z $)GPPPP
    Obukhov长度L中的摩擦速度(u*LGPPGG
    Obukhov长度L中的温度尺度(θ*LGPGPG
    注: P代表斑块平均值,G代表网格平均值。
    下载: 导出CSV
  • [1] Ament F, Simmer C. 2006. Improved representation of land-surface heterogeneity in a non-hydrostatic numerical weather prediction model [J]. Bound. -Layer Meteor., 121(1): 153−174. doi: 10.1007/s10546-006-9066-4
    [2] Avissar R. 1991. A statistical−dynamical approach to parameterize subgrid-scale land-surface heterogeneity in climate models [J]. Surv. Geophys., 12(1): 155−178. doi: 10.1007/BF01903417
    [3] Avissar R. 1992. Conceptual aspects of a statistical−dynamical approach to represent landscape subgrid-scale heterogeneities in atmospheric models [J]. J. Geophys. Res. : Atmos., 97(D3): 2729−2742. doi: 10.1029/91JD01751
    [4] Avissar R, Pielke R A. 1989. A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology [J]. Mon. Wea. Rev., 117(10): 2113−2136. doi:10.1175/1520-0493(1989)117<2113:APOHLS>2.0.CO;2
    [5] 鲍艳, 张宇, 吕世华, 等. 2005. 干旱区陆面过程参数改进对东亚区域气候影响的数值模拟 [J]. 高原气象, 24(4): 487−495. doi: 10.3321/j.issn:1000-0534.2005.04.004

    Bao Yan, Zhang Yu, Lü Shihua, et al. 2005. Simulation of the impact of improvement of land surface process parameterization in arid region on regional climate in East Asia [J]. Plateau Meteorology (in Chinese), 24(4): 487−495. doi: 10.3321/j.issn:1000-0534.2005.04.004
    [6] Bonan G B, Pollard D, Thompson S L. 1993. Influence of subgrid-scale heterogeneity in leaf area index, stomatal resistance, and soil moisture on grid-scale land–atmosphere interactions [J]. J. Climate, 6(10): 1882−1897. doi:10.1175/1520-0442(1993)006<1882:IOSSHI>2.0.CO;2
    [7] Bou-Zeid E, Meneveau C, Parlange M B. 2004. Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness [J]. Water Resour. Res., 40(2): W02505. doi: 10.1029/2003WR002475
    [8] Businger J A, Wyngaard J C, Izumi Y, et al. 1971. Flux-profile relationships in the atmospheric surface layer [J]. J. Atmos. Sci., 28(2): 181−189. doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2
    [9] Calaf M, Meneveau C, Meyers J. 2010. Large eddy simulation study of fully developed wind-turbine array boundary layers [J]. Phys. Fluids, 22(1): 015110. doi: 10.1063/1.3291077
    [10] Catalano F, Moeng C H. 2010. Large-eddy simulation of the daytime boundary layer in an idealized valley using the weather research and forecasting numerical model [J]. Bound. -Layer Meteor., 137(1): 49−75. doi: 10.1007/s10546-010-9518-8
    [11] 陈星, 雷鸣, 汤剑平. 2006. 地表植被改变对气候变化影响的模拟研究 [J]. 地球科学进展, 21(10): 1075−1082. doi: 10.3321/j.issn:1001-8166.2006.10.012

    Chen Xing, Lei Ming, Tang Jianping. 2006. Simulating the effect of changed vegetation on the climate change in Eurasia [J]. Adv. Earth Sci. (in Chinese), 21(10): 1075−1082. doi: 10.3321/j.issn:1001-8166.2006.10.012
    [12] 陈海山, 李兴, 华文剑. 2015. 近20年中国土地利用变化影响区域气候的数值模拟 [J]. 大气科学, 39(2): 357−369. doi: 10.3878/j.issn.1006-9895.1404.14114

    Chen Haishan, Li Xing, Hua Wenjian. 2015. Numerical simulation of the impact of land use/land cover change over China on regional climates during the last 20 years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(2): 357−369. doi: 10.3878/j.issn.1006-9895.1404.14114
    [13] Chen G Y, Wei Z G, Jin X A, et al. 2020. The effects of the modified mosaic approach method on regional simulations of surface meteorological variables in western China [J]. Int. J. Climatol., 40(9): 4053−4066. doi: 10.1002/joc.6440
    [14] Churchfield M J, Lee S, Michalakes J, et al. 2012. A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics [J]. J. Turbul., 13: N14. doi: 10.1080/14685248.2012.668191
    [15] Dai Y J, Zeng X B, Dickinson R E, et al. 2003. The common land model [J]. Bull. Amer. Meteor. Soc., 84(8): 1013−1024. doi: 10.1175/BAMS-84-8-1013
    [16] Deardorff J W. 1970. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers [J]. J. Fluid Mech., 41(2): 453−480. doi: 10.1017/S0022112070000691
    [17] Deardorff J W. 1972. Numerical investigation of neutral and unstable planetary boundary layers [J]. J. Atmos. Sci., 29(1): 91−115. doi:10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2
    [18] Deardorff J W. 1980. Stratocumulus-capped mixed layers derived from a three-dimensional model [J]. Bound. -Layer Meteor., 18(4): 495−527. doi: 10.1007/BF00119502
    [19] 丁一汇, 李巧萍, 董文杰. 2005. 植被变化对中国区域气候影响的数值模拟研究 [J]. 气象学报, 63(5): 613−621. doi: 10.3321/j.issn:0577-6619.2005.05.007

    Ding Yihui, Li Qiaoping, Dong Wenjie. 2005. A numerical simulation study of the impacts of vegetation changes on regional climate in China [J]. Acta Meteor. Sinica (in Chinese), 63(5): 613−621. doi: 10.3321/j.issn:0577-6619.2005.05.007
    [20] Dyer A J. 1974. A review of flux-profile relationships [J]. Bound. -Layer Meteor., 7(3): 363−372. doi: 10.1007/BF00240838
    [21] Foken T. 2006. 50 years of the Monin–Obukhov similarity theory [J]. Bound. -Layer Meteor., 119(3): 431−447. doi: 10.1007/s10546-006-9048-6
    [22] 符淙斌, 袁慧玲. 2001. 恢复自然植被对东亚夏季气候和环境影响的一个虚拟试验 [J]. 科学通报, 46(8): 691−695. doi: 10.3321/j.issn:0023-074X.2001.08.018

    Fu Congbin, Yuan Huiling. 2001. A virtual numerical experiment to understand the impacts of recovering natural vegetation on the summer climate and environmental conditions in East Asia [J]. Chinese Sci. Bull. (in Chinese), 46(8): 691−695. doi: 10.3321/j.issn:0023-074X.2001.08.018
    [23] 高学杰, 张冬峰, 陈仲新, 等. 2007. 中国当代土地利用对区域气候影响的数值模拟 [J]. 中国科学(D辑: 地球科学), 37(3): 397−404. doi: 10.3969/j.issn.1674-7240.2007.03.013

    Gao Xuejie, Zhang Dongfeng, Chen Zhongxin, et al. 2007. Numerical simulation of contemporary land use impacts on regional climate in China [J]. Sci. in China (Ser. D: Earth Sci. ) (in Chinese), 37(3): 397−404. doi: 10.3969/j.issn.1674-7240.2007.03.013
    [24] Garratt J R. 1990. The internal boundary layer — A review [J]. Bound. -Layer Meteor., 50(1): 171−203. doi: 10.1007/BF00120524
    [25] Giorgi F, Avissar R. 1997. Representation of heterogeneity effects in Earth system modeling: Experience from land surface modeling [J]. Rev. Geophys., 35(4): 413−437. doi: 10.1029/97RG01754
    [26] Högström U. 1988. Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation [J]. Bound. -Layer Meteor., 42(1): 55−78. doi: 10.1007/BF00119875
    [27] Högström U. 1996. Review of some basic characteristics of the atmospheric surface layer [J]. Bound. -Layer Meteor., 78(3): 215−246. doi: 10.1007/BF00120937
    [28] Kader B A, Yaglom A M. 1990. Mean fields and fluctuation moments in unstably stratified turbulent boundary layers [J]. J. Fluid Mech., 212: 637−662. doi: 10.1017/S0022112090002129
    [29] Letzel M O, Raasch S. 2003. Large eddy simulation of thermally induced oscillations in the convective boundary layer [J]. J. Atmos. Sci., 60(18): 2328−2341. doi:10.1175/1520-0469(2003)060<2328:LESOTI>2.0.CO;2
    [30] Li D, Bou-Zeid E, Barlage M, et al. 2013. Development and evaluation of a mosaic approach in the WRF-Noah framework [J]. J. Geophys. Res. : Atmos., 118(21): 11918−11935. doi: 10.1002/2013JD020657
    [31] Li H D, Zhou Y Y, Wang X, et al. 2019. Quantifying urban heat island intensity and its physical mechanism using WRF/UCM [J]. Sci. Total Environ., 650: 3110−3119. doi: 10.1016/j.scitotenv.2018.10.025
    [32] Liu G, Sun J N, Yin L. 2011. Turbulence characteristics of the shear-free convective boundary layer driven by heterogeneous surface heating [J]. Bound. -Layer Meteor., 140(1): 57−71. doi: 10.1007/s10546-011-9591-7
    [33] Liu S F, Hintz M, Li X L. 2016. Evaluation of atmosphere–land interactions in an LES from the perspective of heterogeneity propagation [J]. Adv. Atmos. Sci., 33(5): 571−578. doi: 10.1007/s00376-015-5212-6
    [34] Liu S F, Shao Y P, Kunoth A, et al. 2017. Impact of surface-heterogeneity on atmosphere and land-surface interactions [J]. Environ. Model. Softw., 88: 35−47. doi: 10.1016/J.ENVSOFT.2016.11.006
    [35] Liu S F, Zeng X, Dai Y, et al. 2019. Further improvement of surface flux estimation in the unstable surface layer based on large-eddy simulation data [J]. J. Geophys. Res. : Atmos., 124(17−18): 9839−9854. doi: 10.1029/2018JD030222
    [36] Lynn B H, Abramopoulos F, Avissar R. 1995. Using similarity theory to parameterize mesoscale heat fluxes generated by subgrid-scale landscape discontinuities in GCMs [J]. J. Climate, 8(4): 932−951. doi:10.1175/1520-0442(1995)008<0932:USTTPM>2.0.CO;2
    [37] Mahrt L. 2000. Surface heterogeneity and vertical structure of the boundary layer [J]. Bound. -Layer Meteor., 96(1): 33−62. doi: 10.1023/A:1002482332477
    [38] Mahrt L, Sun J L, Vickers D, et al. 1994. Observations of fluxes and inland breezes over a heterogeneous surface [J]. J. Atmos. Sci., 51(17): 2484−2499. doi:10.1175/1520-0469(1994)051<2484:OOFAIB>2.0.CO;2
    [39] Mirocha J D, Lundquist J K, Kosović B. 2010. Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the advanced research WRF model [J]. Mon. Wea. Rev., 138(11): 4212−4228. doi: 10.1175/2010MWR3286.1
    [40] Moeng C H. 1984. A large-eddy-simulation model for the study of planetary boundary-layer turbulence [J]. J. Atmos. Sci., 41(13): 2052−2062. doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2
    [41] Moeng C H, Dudhia J, Klemp J, et al. 2007. Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model [J]. Mon. Wea. Rev., 135(6): 2295−2311. doi: 10.1175/MWR3406.1
    [42] Monin A S, Obukhov A M. 1954. Basic laws of turbulent mixing in the surface layer of the atmosphere [J]. Contrib. Geophys. Inst. Acad. Sci. USSR, 24: 163−187.
    [43] Raasch S, Harbusch G. 2001. An analysis of secondary circulations and their effects caused by small-scale surface inhomogeneities using large-eddy simulation [J]. Bound. -Layer Meteor., 101(1): 31−59. doi: 10.1023/A:1019297504109
    [44] Roy S B, Avissar R. 2000. Scales of response of the convective boundary layer to land-surface heterogeneity [J]. Geophys. Res. Lett., 27(4): 533−536. doi: 10.1029/1999GL010971
    [45] Schultz N M, Lee X, Lawrence P J, et al. 2016. Assessing the use of subgrid land model output to study impacts of land cover change [J]. J. Geophys. Res. : Atmos., 121(11): 6133−6147. doi: 10.1002/2016JD025094
    [46] Sharma A, Fernando H J S, Hamlet A F, et al. 2017. Urban meteorological modeling using WRF: A sensitivity study [J]. Int. J. Climatol., 37(4): 1885−1900. doi: 10.1002/joc.4819
    [47] Smagorinsky J. 1963. General circulation experiments with the primitive equations: I. The basic experiment [J]. Mon. Wea. Rev., 91(3): 99−164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
    [48] Sullivan P P, McWilliams J C, Moeng C H. 1994. A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows [J]. Bound. -Layer Meteor., 71(3): 247−276. doi: 10.1007/BF00713741
    [49] Wood N, Mason P. 1991. The influence of static stability on the effective roughness lengths for momentum and heat transfer [J]. Quart. J. Roy. Meteor. Soc., 117(501): 1025−1056. doi: 10.1002/qj.49711750108
    [50] 张耀存. 2004. 我国北方地区植被类型变化气候效应的虚拟数值试验[J]. 南京大学学报(自然科学), 40(6): 684–691. Zhang Yaocun. 2004. Virtual numerical experiments on the climatic effects of vegetation type changes over northern China [J]. J. Nanjing Univ

    Nat. Sci. ) (in Chinese), 40(6): 684–691. doi: 10.3321/j.issn:0469-5097.2004.06.004
    [51] 张强, 黄荣辉, 王胜. 2011. 浅论西北干旱区陆面过程和大气边界层对区域天气气候的特殊作用 [J]. 干旱气象, 29(2): 133−136. doi: 10.3969/j.issn.1006-7639.2011.02.001

    Zhang Qiang, Huang Ronghui, Wang Sheng. 2011. Discussion about special function of land surface process and atmospheric boundary on regional climate in arid area of northwest China [J]. J. Arid Meteor. (in Chinese), 29(2): 133−136. doi: 10.3969/j.issn.1006-7639.2011.02.001
    [52] 郑益群, 钱永甫, 苗曼倩, 等. 2002. 植被变化对中国区域气候的影响Ⅰ: 初步模拟结果[J]. 气象学报, 60(1): 1–16.

    Zheng Yiqun, Qian Yongfu, Miao Manqian, et al. 2002. The effects of vegetation change on regional climate I: Simulation results [J]. Acta Meteor. Sinica (in Chinese), 60(1): 1–16. doi: 10.3321/j.issn:0577-6619.2002.01.001
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  8
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 网络出版日期:  2021-05-21
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回