高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FLUXNET数据集对陆面模式CoLM能量通量的单点评估

郭琦 刘少锋 袁华 李红梅

郭琦, 刘少锋, 袁华, 等. 2022. 基于FLUXNET数据集对陆面模式CoLM能量通量的单点评估[J]. 气候与环境研究, 27(6): 688−706 doi: 10.3878/j.issn.1006-9585.2021.21084
引用本文: 郭琦, 刘少锋, 袁华, 等. 2022. 基于FLUXNET数据集对陆面模式CoLM能量通量的单点评估[J]. 气候与环境研究, 27(6): 688−706 doi: 10.3878/j.issn.1006-9585.2021.21084
GUO Qi, LIU Shaofeng, YUAN Hua, et al. 2022. Evaluating Energy Fluxes of the Common Land Model Based on FLUXNET Dataset [J]. Climatic and Environmental Research (in Chinese), 27 (6): 688−706 doi: 10.3878/j.issn.1006-9585.2021.21084
Citation: GUO Qi, LIU Shaofeng, YUAN Hua, et al. 2022. Evaluating Energy Fluxes of the Common Land Model Based on FLUXNET Dataset [J]. Climatic and Environmental Research (in Chinese), 27 (6): 688−706 doi: 10.3878/j.issn.1006-9585.2021.21084

基于FLUXNET数据集对陆面模式CoLM能量通量的单点评估

doi: 10.3878/j.issn.1006-9585.2021.21084
基金项目: 国家重点研发计划项目 2017YFA0604300,国家自然科学基金项目 41875128、41730962,南方海洋科学与工程广东省实验室(珠海)创新团队建设项目311021009
详细信息
    作者简介:

    郭琦,女,1993年出生,硕士研究生,主要从事陆面模式研究。E-mail: 505766845@qq.com

    通讯作者:

    刘少锋,E-mail: liushaof5@mail.sysu.edu.cn

  • 中图分类号: P461

Evaluating Energy Fluxes of the Common Land Model Based on FLUXNET Dataset

Funds: National Key Research and Development Program of China (Grant 2017YFA0604300), National Natural Science Foundation of China (Grants 41875128 and 41730962), Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant 311021009)
  • 摘要: 模式评估是模式发展中的重要一环。本文利用来自FLUXNET2015数据集的30个站点的涡动相关系统观测数据,重点关注能量通量,对通用陆面模式(Common Land Model version 2014,CoLM2014)在不同典型下垫面的模拟能力进行评估。结果表明,模式总体上能抓住感热、潜热和净辐射通量在日、季节和年平均等不同时间尺度上的变化特征,对感热、潜热和净辐射通量都有较好的模拟能力,净辐射的模拟效果最好,潜热通量次之。季节变化模拟中,感热、潜热通量在夏季不同植被型下站点的空间离散程度大于冬季,不同站点间模拟效果相差较大,净辐射多站点标准差变化幅度要小于感热、潜热,不同站点间模拟效果偏差较小。CoLM在常绿针叶林、稀树林地、草地、农田模拟感热、潜热通量的效果相对较好,在永久湿地、落叶阔叶林下模拟感热通量较差。本研究对CoLM2014在未来的改进和发展中提供了有用的参考。
  • 图  1  基于USGS分类的站点分布

    Figure  1.  Distribution of sites on the USGS classification

    图  2  不同地表覆盖类型(a)感热通量、(b)潜热通量、(c)净辐射的年平均模拟与观测对比。EBF表示常绿阔叶林,OSH表示稀疏灌木林,DBF表示落叶阔叶林,WSA表示有林草地,WET表示永久湿地,MF表示混交林,SAV表示稀树林地,CRO表示农田,GRA表示草地,ENF表示常绿针叶林

    Figure  2.  Comparison of annual mean sensible heat flux, latent heat flux, and net radiation in different land cover types between simulation and observation. EBF: evergreen broadleaf forest, OSH: open shrubland, DBF: deciduous broadleaf forest, WSA: woody savanna, WET: wetland, MF: mixed forest, SAV: savanna, CRO: cropland, GRA: grassland, ENF: evergreen needleleaf forest

    图  3  不同地表覆盖类型感热通量模拟值与观测值的多年平均季节变化和多站点的标准偏差季节变化(柱状图):(a)EBF;(b)OSH;(c)DBF;(d)WSA;(e)WET;(f)MF;(g)SAV;(h)CRO;(i)GRA;(j)ENF。地表覆盖类型后面括号内的数字表示为对应植被类型的FLUXNET站点个数

    Figure  3.  Multi-annual averaged seasonal variations in the simulated and observed sensible heat flux in different land cover types and the corresponding standard deviation across sites (bar chart): (a) EBF: evergreen broadleaf forest; (b) OSH: open shrubland; (c) DBF: deciduous broadleaf forest; (d) WSA: woody savanna; (e) WET: wetland; (f) MF: mixed forest; (g) SAV: savanna; (h) CRO: cropland; (i) GRA: grassland; (j) ENF: evergreen needleleaf forest. The numbers inside brackets following the land-cover types represent the number of FLUXNET sites selected for the corresponding vegetation type

    图  4  不同地表覆盖类型多年月平均感热通量的多站点模拟与观测对比散点图:(a)EBF;(b)OSH;(c)DBF;(d)WSA;(e)WET;(f)MF;(g)SAV;(h)CRO;(i)GRA;(j)ENF

    Figure  4.  Scatter plots of monthly sensible heat flux between simulation and observation for sites in different land cover types: (a) EBF; (b) OSH; (c) DBF; (d) WSA; (e) WET; (f) MF; (g) SAV; (h) CRO; (i) GRA; (j) ENF

    图  5  图3,但为潜热通量

    Figure  5.  Same as Fig. 3, but for latent heat flux

    图  6  图4,但为潜热通量

    Figure  6.  Same as Fig. 4, but for latent heat flux

    图  8  图4,但为净辐射

    Figure  8.  Same as Fig. 4, but for net radiation

    图  7  图3,但为净辐射

    Figure  7.  Same as Fig. 3, but for net radiation

    图  9  不同地表覆盖类型感热通量模拟值与观测值的多年平均日变化对比:(a)EBF;(b)OSH;(c)DBF;(d)WSA;(e)WET;(f)MF;(g)SAV;(h)CRO;(i)GRA;(j)ENF

    Figure  9.  Comparison between the observed and simulated sensible heat flux on a diurnal course in different land cover types (monthly average over many years): (a) EBF; (b) OSH; (c) DBF; (d) WSA; (e) WET; (f) MF; (g) SAV; (h) CRO; (i) GRA; (j) ENF

    图  10  不同地表覆盖类型感热通量的多年平均日变化在不同季节春季(MAM)、夏季(JJA)、秋季(SON)、冬季(DJF)的模拟偏差(模拟减观测):(a)EBF;(b)OSH;(c)DBF;(d)WSA;(e)WET:(f)MF;(g)SAV;(h)CRO;(i)GRA;(j)ENF

    Figure  10.  Bias (simulation minus observation) of the simulated multi-annual average diurnal variation of sensible heat flux in different land cover types in spring (March–April–May, MAM), summer (June–July–August, JJA), autumn (September–October–November, SON), and winter (December–January–February, DJF): (a) EBF; (b) OSH; (c) DBF; (d) WSA; (e) WET; (f) MF; (g) SAV; (h) CRO; (i) GRA; (j) ENF

    图  11  图9,但为潜热通量

    Figure  11.  Same as Fig. 9, but for latent heat flux

    图  12  图10,但为潜热通量

    Figure  12.  Same as Fig. 10, but for latent heat flux

    图  13  图9,但为净辐射

    Figure  13.  Same as Fig. 9, but for net radiation

    图  14  图10,但为净辐射

    Figure  14.  Same as Fig. 10, but for net radiation

    图  15  CoLM对10种地表覆盖类型(1:CRO;2:DBF;3:ENF;4:WET;5:GRA;6:MF;7:SAV;8:EBF;9:WSA;10:OSH)的(a)感热通量、(b)潜热通量、(c)净辐射在不同时间尺度(半小时、月、年)上的模拟能力对比泰勒图

    Figure  15.  Taylor diagrams of the CoLM performance for (a) sensible heat flux, (b) latent heat flux, and (c) net radiation, based on time scales of stepwise, monthly, and yearly in different land cover types (1: CRO; 2: DBF; 3: ENF; 4: WET; 5: GRA; 6: MF; 7: SAV; 8: EBF; 9: WSA; 10: OSH)

    图  16  CoLM在10种地表覆盖类型模拟的感热通量(H)、潜热通量(LE)、净辐射(Rnet)在不同时间尺度(半小时、月、年)的(a)RMSE和(b)MAE

    Figure  16.  Performance of the CoLM in simulating sensible heat flux (H), latent heat flux (LE), and net radiation (Rnet) on time scales of stepwise, monthly, and yearly measured using the RMSE and MAE (W/m²) calculated in different land cover types

    表  1  FLUXNET站点信息

    Table  1.   FLUXNET site information

     站点气候型  气候带降水量/
    mm a−1
    平均温
    度/°C
    纬度 经度 观测年地表覆盖类型(USGS)
    AU-TumCfb温带海洋性气候115910.735.7°S148.2°E2002~2005年常绿阔叶林
    AU-HowAw冬干型热带草原气候144927.012.5°S131.2°E2003~2005年稀树林地
    BE-LonCfb温带海洋性气候8001050.6°N4.7°E2004~2007年农田
    BE-BraCfb温带海洋性气候7509.851.3°N4.5°E2000~2002年混交林
    BW-MalBSh热带半干旱气候49322.419.9°S23.6°E1999~2001年稀树林地
    CA-MerDfb温夏型湿润气候8916.145.4°N75.5°W2000~2005年湿地
    CA-QfoDfc亚寒带湿润气候962.32−0.3649.7°N74.3°W2003~2005年常绿针叶林
    CA-SF3Dfc亚寒带湿润气候4700.454.1°N106.0°W2003~2005年稀疏灌木林
    CA-NS2Dfc亚寒带湿润气候499.82−2.8855.9°N98.5°W2002~2005年常绿针叶林
    CA-NS1Dfc亚寒带湿润气候500.29−2.8955.8°N98.4°W2002~2005年常绿针叶林
    CA-ManDfc亚寒带湿润气候520−3.255.9°N98.5°W2000~2003年常绿针叶林
    DE-ThaCfb温带海洋性气候6438.151.0°N13.6°E1998~2005年常绿针叶林
    DE-Geb Cfb温带海洋性气候4708.551.1°N10.9°E2004~2005年农田
    ES-LMaCsa热夏型地中海气候37016.539.9°N5.8°W2004~2005年稀树林地
    FI-HyyDfc亚寒带湿润气候6202.261.8°N24.3°E2001~2004年常绿针叶林
    FI-KaaDfc亚寒带湿润气候454−1.469.1°N27.3°E2004~2005年湿地
    IT-MBoCfb亚寒带湿润气候12145.146.0°N11.0°E2003~2007年草地
    IT-Amp Cfa温带海洋性气候94510.641.9°N13.6°E2003~2005年草地
    IT-CpzCsa温带海洋性气候78015.641.7°N12.4°E2006~2008年常绿阔叶林
    IT-LavCfb温带海洋性气候12917.845.9°N11.3°E2004~2007年常绿针叶林
    US-Bo1Dfa热夏型温带湿润气候99111.040.0°N88.3°W1998~2005年农田
    US-Ha1Dfb温夏型湿润气候107111.040.0°N88.3°W1996~2002年落叶阔叶林
    US-BloCsa热夏型地中海气候138011.238.9°N120.6°W2000~2005年常绿针叶林
    US-FPeBSk凉爽半干旱气候3355.548.3°N105.1°W2000~2005年草地
    US-VarCsa热夏型地中海气候54415.938.4°N121.0°W2001~2005年草地
    US-SyvDfb温夏型湿润气候8263.846.2°N89.3°W2002~2005年混交林
    US-GooCfa亚热带湿润气候1425.7715.8934.3°N89.9°W2002~2005年草地
    US-TonCsa热夏型地中海气候55915.838.4°N120.9°W2001~2005年有林草地
    US-ARMCfa亚热带湿润气候84314.7636.6°N97.5°W2003~2005年农田
    ZA-KruCwa亚热带季风性湿润气候52522.225.0°S31.5°E2002~2003年稀树林地
    下载: 导出CSV

    表  2  不同地表覆盖类型感热通量的年尺度变化模拟与观测评估

    Table  2.   Evaluation of the annual variability of sensible heat flux in different land cover types between simulation and observation

    地表覆
    盖类型
    样本数感热通量模拟年
    平均值/W m−2
    感热通量观测年
    平均值/W m−2
    绝对误差/
    W m−2
     相对误差相关系数均方根误差/
    W m−2
    EBF 739.3151.26−11.95−23.30%0.1416.89
    OSH 322.4831.09−8.61−27.69%0.738.75
    DBF 615.9734.10−18.13−53.17%0.5332.11
    WSA 552.4059.03−6.63−11.23%0.758.29
    WET 84.4219.04−14.62−76.79%0.3047.78
    MF 714.2912.971.3210.18%0.81*5.11
    SAV 1068.0751.3516.7232.56%0.89*16.37
    CRO 1723.3520.362.9914.69%0.92*8.19
    GRA 2332.8923.439.4640.38%0.84*14.33
    ENF 3720.3733.90−13.53−39.91%0.83*14.46
    全部12328.2731.91−3.64−11.40%0.7117.23
    注:EBF表示常绿阔叶林,OSH表示稀疏灌木林,DBF表示落叶阔叶林,WSA表示有林草地,WET表示永久湿地,MF表示混交林,SAV表示稀树林地,CRO表示农田,GRA表示草地,ENF表示常绿针叶林;*表示相关系数通过0.01显著性检验;下同。
    下载: 导出CSV

    表  3  不同地表覆盖类型潜热通量的年尺度变化模拟与观测评估

    Table  3.   Evaluation of the annual variability of latent heat flux in different land cover types between simulation and observation

    地表覆
    盖类型
    样本数潜热通量模拟年
    平均值/W m−2
    潜热通量观测年
    平均值/W m−2
    绝对误差/W m−2 相对误差相关系数均方根误差/
    W m−2
    EBF748.3344.473.868.70%0.6417.82
    OSH323.0824.54−1.45−5.91%0.752.52
    DBF640.1035.894.2111.73%0.485.13
    WSA533.6730.323.3511.05%0.684.37
    WET855.8030.9624.8580.26%−0.9237.45
    MF739.2222.3016.920.76%−0.8722.85
    SAV1037.3545.50−8.15−17.91%0.96*11.45
    CRO1742.3639.283.087.84%0.79*12.21
    GRA2339.1734.274.9014.30%0.76*13.03
    ENF3734.5731.223.3510.73%0.77*10.44
    全部12339.1234.324.7913.96%0.57*13.73
    下载: 导出CSV

    表  4  不同地表覆盖类型净辐射的年尺度变化模拟与观测评估

    Table  4.   Evaluation of the annual variability of net radiation in different land cover types between simulation and observation

    地表覆
    盖类型
    样本数净辐射模拟年
    平均值/W m−2
    净辐射观测年
    平均值/W m−2
    绝对误差/W m−2 相对误差相关系数均方根误差/
    W m−2
    EBF 790.3188.212.102.38%0.79*6.81
    OSH 324.5451.01−26.47−51.89%0.424.92
    DBF 643.7576.10−32.35−42.51%0.5332.99
    WSA 586.4395.51−9.09−9.52%0.3410.73
    WET 843.9264.27−20.35−31.66%0.6722.32
    MF 754.5860.94−6.37−10.45%0.426.73
    SAV 10105.78112.22−6.44−5.74%0.95*14.03
    CRO 1766.3976.94−10.54−13.70%0.5220.48
    GRA 2372.5461.4411.1018.07%0.5820.52
    ENF 3756.4776.58−20.11−26.26%0.87*25.46
    全部12366.2276.08−9.86−12.96%0.62*16.50
    下载: 导出CSV

    表  5  不同地表覆盖类型下感热、潜热、净辐射通量的平均归一化模拟偏差

    Table  5.   Mean normalized simulation bias of sensible and latent heat fluxes and net radiation flux in different land cover types

    EBF(2)OSH(1)DBF(1)WSA(1)WET(2)MF(2)SAV(4)CRO(4)GRA(5)ENF(8)
    感热通量−0.02−0.01−0.21−0.03−0.42−0.050.060.020.060.03
    潜热通量0.01−0.130.150.210.150.06−0.03−0.04−0.050.04
    净辐射−0.05−0.08−0.02−0.23−0.120.20−0.030.120.19−0.08
    下载: 导出CSV
  • [1] Baldocchi D, Falge E, Gu L H, et al. 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities [J]. Bull. Amer. Meteor. Soc., 82(11): 2415−2434. doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
    [2] Bonan G B. 1996. A land surface model (LSM Version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and User’s Guide [R]. NCAR Tech. Note, NCAR/TN-417+STR, 150pp.
    [3] Bonan G B. 2015. Ecological Climatology: Concepts and Applications [M]. 3rd ed. Cambridge: Cambridge University Press.
    [4] Collatz G J, Ball J T, Grivet C, et al. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer [J]. Agricultural and Forest Meteorology, 54(2–4): 107–136, doi: 10.1016/0168-1923(91)90002-8
    [5] Dai Y J, Dickinson R E, Wang Y P. 2004. A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance [J]. J. Climate, 17(12): 2281−2299. doi:10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2
    [6] Dai Y J, Zeng Q C. 1997. A land surface model (IAP94) for climate studies part I: Formulation and validation in off-line experiments [J]. Adv. Atmos. Sci., 14(4): 433−460. doi: 10.1007/s00376-997-0063-4
    [7] Dai Y J, Zeng X B, Dickinson R E, et al. 2003. The common land model [J]. Bull. Amer. Meteor. Soc., 84(8): 1013−1024. doi: 10.1175/BAMS-84-8-1013
    [8] 戴永久, 魏楠, 黄安宁, 等. 2018. 通用陆面模式(CoLM)湖泊过程方案与性能评估[J]. 科学通报, 63(28−29): 3002−3021

    Dai Yongjiu, Wei Nan, Huang Anning, et al. 2018. The lake scheme of the Common Land Model and its performance evaluation [J]. Chinese Science Bulletin (in Chinese), 63(28−29): 3002−3021. doi: 10.1360/N972018-00609
    [9] Dickinson R E, Henderson-Sellers A, Kennedy P J. 1993. Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR community climate model [R]. NCAR Tech. Note, NCAR/TN-387+STR, 72pp.
    [10] Groenendijk M, Dolman A J, van der Molen M K, et al. 2011. Assessing parameter variability in a photosynthesis model within and between plant functional types using global FLUXNET eddy covariance data [J]. Agricultural and Forest Meteorology, 151(1): 22−38. doi: 10.1016/j.agrformet.2010.08.013
    [11] Huang C L, Li X, Gu J. 2008. Estimation of regional soil moisture by assimilating multi-sensor passive microwave remote sensing observations based on ensemble Kalman filter [C]//2008 IEEE International Geoscience and Remote Sensing Symposium. Boston, MA: IEEE, III-1052–III-1055,doi: 10.1109/IGARSS.2008.4779534
    [12] IPCC. 2019. Summary for policymakers [M]//Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Shukla P R, Skea J, Calvo Buendia E, et al, Eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
    [13] Ji D, Wang L, Feng J, et al. 2014. Description and basic evaluation of BNU-ESM version 1 [J]. Geosci. Model Dev. Discuss., 7(2): 1601−1647. doi: 10.5194/gmdd-7-1601-2014
    [14] Kiehl J T, Hack J J, Bonan G B, et al. 1996. Description of the NCAR Community Climate Model (CCM3) [R]. NCAR Tech. Note, NCAR/TN-420+STR, 112pp.
    [15] Liang X Z, Xu M, Yuan X, et al. 2012. Regional climate–weather research and forecasting model [J]. Bull. Amer. Meteor. Soc., 93(9): 1363−1387. doi: 10.1175/BAMS-D-11-00180.1
    [16] 刘少锋, 林朝晖, 蒋星, 等. 2009. IAP大气-植被耦合模式的建立及其模拟 [J]. 气候与环境研究, 14(3): 258−272. doi: 10.3878/j.issn.1006-9585.2009.03.03

    Liu Shaofeng, Lin Zhaohui, Jiang Xing, et al. 2009. The IAP coupled atmosphere vegetation model and its numerical simulation [J]. Climatic and Environmental Research (in Chinese), 14(3): 258−272. doi: 10.3878/j.issn.1006-9585.2009.03.03
    [17] 罗斯琼, 吕世华, 张宇, 等. 2008. CoLM模式对青藏高原中部BJ站陆面过程的数值模拟 [J]. 高原气象, 27(2): 259−271.

    Luo Siqiong, Lü Shihua, Zhang Yu, et al. 2008. Simulation analysis on land surface process of BJ site of Central Tibetan Plateau using CoLM [J]. Plateau Meteorology (in Chinese), 27(2): 259−271.
    [18] 马灵玲. 2005. 通用陆面模式CoLM估算地表蒸散[D]. 中国科学院中国遥感卫星地面站硕士学位论文. MaLingling. 2005. Estimation of Regional ET with the Common Land Model[D]. M. S. thesis (in Chinese), China Remote Sensing Satellite Ground Station, Chinese Academy of Sciences
    [19] Meng C L, Li Z L, Zhan X, et al. 2009. Land surface temperature data assimilation and its impact on evapotranspiration estimates from the Common Land Model [J]. Water Resour. Res., 45(2): W02421. doi: 10.1029/2008WR006971
    [20] Pastorello G, Trotta C, Canfora E, et al. 2020. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data [J]. Scientific Data, 7(1): 225. doi: 10.1038/s41597-020-0534-3
    [21] 彭静漫, 刘少锋, 戴永久, 等. 2020. 基于陆面模式基准平台ILAMB对陆面模式CoLM的评估 [J]. 气候与环境研究, 25(6): 649−666. doi: 10.3878/j.issn.1006-9585.2020.20021

    Peng Jingman, Liu Shaofeng, Dai Yongjiu, et al. 2020. Evaluation of common land model based on international land model benchmarking system [J]. Climatic and Environmental Research (in Chinese), 25(6): 649−666. doi: 10.3878/j.issn.1006-9585.2020.20021
    [22] Shangguan W, Dai Y J, Duan Q Y, et al. 2014. A global soil data set for earth system modeling [J]. J. Adv. Model. Earth Syst., 6(1): 249−263. doi: 10.1002/2013MS000293
    [23] 宋耀明, 郭维栋, 张耀存, 等. 2009. 陆面过程模式CoLM和NCAR_CLM3.0对中国典型森林生态系统陆气相互作用的模拟Ⅰ. 不同模式模拟结果的初步分析 [J]. 气候与环境研究, 14(3): 229−242. doi: 10.3878/j.issn.1006-9585.2009.03.01

    Song Yaoming, Guo Weidong, Zhang Yaocun, et al. 2009. Performances of CoLM and NCAR_CLM3.0 in simulating land-atmosphere interactions over typical forest ecosystems in China Part I. Preliminary analysis of the simulations based on different models [J]. Climatic and Environmental Research (in Chinese), 14(3): 229−242. doi: 10.3878/j.issn.1006-9585.2009.03.01
    [24] Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram [J]. J. Geophys. Res., 106(D7): 7183−7192. doi: 10.1029/2000JD900719
    [25] Twine T E, Kustas W P, Norman J M, et al. 2000. Correcting eddy-covariance flux underestimates over a grassland [J]. Agricultural and Forest Meteorology, 103(3): 279−300. doi: 10.1016/S0168-1923(00)00123-4
    [26] Wilson K, Goldstein A, Falge E, et al. 2002. Energy balance closure at FLUXNET sites [J]. Agricultural and Forest Meteorology, 113(1–4): 223–243,doi: 10.1016/S0168-1923(02)00109-0
    [27] Xin Q C, Zhou X W, Wei N, et al. 2020. A semiprognostic phenology model for simulating multidecadal dynamics of global vegetation leaf area index [J]. Journal of Advances in Modeling Earth Systems, 12(7): e2019MS001935. doi: 10.1029/2019MS001935
    [28] Yuan H, Dai Y J, Xiao Z Q, et al. 2011. Reprocessing the MODIS leaf area index products for land surface and climate Modelling [J]. Remote Sens. Environ., 115(5): 1171−1187. doi: 10.1016/j.rse.2011.01.001
    [29] 曾庆存, 林朝晖. 2010. 地球系统动力学模式和模拟研究的进展 [J]. 地球科学进展, 25(1): 1−6. doi: 10.11867/j.issn.1001-8166.2010.01.0001

    Zeng Qingcun, Lin Zhaohui. 2010. Recent progress on the earth system dynamical model and its numerical simulations [J]. Advances in Earth Science (in Chinese), 25(1): 1−6. doi: 10.11867/j.issn.1001-8166.2010.01.0001
    [30] Zhang X X, Dai Y J, Cui H Z, et al. 2017. Evaluating common land model energy fluxes using FLUXNET data [J]. Adv. Atmos. Sci., 34(9): 1035−1046. doi: 10.1007/s00376-017-6251-y
    [31] Zhu J W, Zeng X D, Zhang M H, et al. 2018. Evaluation of the new dynamic global vegetation model in CAS-ESM [J]. Adv. Atmos. Sci., 35(6): 659−670. doi: 10.1007/s00376-017-7154-7
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  44
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 网络出版日期:  2021-11-22
  • 刊出日期:  2022-12-12

目录

    /

    返回文章
    返回