Evaluating Energy Fluxes of the Common Land Model Based on FLUXNET Dataset
-
摘要: 模式评估是模式发展中的重要一环。本文利用来自FLUXNET2015数据集的30个站点的涡动相关系统观测数据,重点关注能量通量,对通用陆面模式(Common Land Model version 2014,CoLM2014)在不同典型下垫面的模拟能力进行评估。结果表明,模式总体上能抓住感热、潜热和净辐射通量在日、季节和年平均等不同时间尺度上的变化特征,对感热、潜热和净辐射通量都有较好的模拟能力,净辐射的模拟效果最好,潜热通量次之。季节变化模拟中,感热、潜热通量在夏季不同植被型下站点的空间离散程度大于冬季,不同站点间模拟效果相差较大,净辐射多站点标准差变化幅度要小于感热、潜热,不同站点间模拟效果偏差较小。CoLM在常绿针叶林、稀树林地、草地、农田模拟感热、潜热通量的效果相对较好,在永久湿地、落叶阔叶林下模拟感热通量较差。本研究对CoLM2014在未来的改进和发展中提供了有用的参考。
-
关键词:
- 模式评估 /
- FLUXNET2015数据集 /
- 能量通量 /
- CoLM2014模式
Abstract: Model evaluation is an important part of model development. In this study, the eddy covariance measurements from 30 FLUXNET sites of FLUXNET2015 dataset were used to evaluate the performance of the Common Land Model, version 2014 (CoLM2014) over different land-cover types, focusing on energy fluxes. The results show that the model captures the variation characteristics of sensible heat flux, latent heat flux, and net radiation flux at different time scales, such as the daily, seasonal, and annual averages, and has a good simulation ability for these fluxes. The simulation effect of net radiation is the best, followed by that of latent heat flux. When simulating seasonal variation, the spatial dispersion degree of sensible and latent heat fluxes under different vegetation types is greater in summer than in winter, and the simulation effect varies greatly among different stations. The variation range of net radiation standard deviation is smaller than sensible and latent heat fluxes, and the deviation of the simulation effect between different stations is small. The evaluation performances for evergreen needleleaf forests, savannas, grasslands, and croplands were relatively good, but poor performances were obtained when simulating the sensible heat flux in wetlands and deciduous broadleaf forests. This study provides a useful reference for improving and developing CoLM2014.-
Key words:
- Model evaluation /
- FLUXNET2015 dataset /
- energy fluxes /
- CoLM2014 model
-
图 2 不同地表覆盖类型(a)感热通量、(b)潜热通量、(c)净辐射的年平均模拟与观测对比。EBF表示常绿阔叶林,OSH表示稀疏灌木林,DBF表示落叶阔叶林,WSA表示有林草地,WET表示永久湿地,MF表示混交林,SAV表示稀树林地,CRO表示农田,GRA表示草地,ENF表示常绿针叶林
Figure 2. Comparison of annual mean sensible heat flux, latent heat flux, and net radiation in different land cover types between simulation and observation. EBF: evergreen broadleaf forest, OSH: open shrubland, DBF: deciduous broadleaf forest, WSA: woody savanna, WET: wetland, MF: mixed forest, SAV: savanna, CRO: cropland, GRA: grassland, ENF: evergreen needleleaf forest
图 3 不同地表覆盖类型感热通量模拟值与观测值的多年平均季节变化和多站点的标准偏差季节变化(柱状图):(a)EBF;(b)OSH;(c)DBF;(d)WSA;(e)WET;(f)MF;(g)SAV;(h)CRO;(i)GRA;(j)ENF。地表覆盖类型后面括号内的数字表示为对应植被类型的FLUXNET站点个数
Figure 3. Multi-annual averaged seasonal variations in the simulated and observed sensible heat flux in different land cover types and the corresponding standard deviation across sites (bar chart): (a) EBF: evergreen broadleaf forest; (b) OSH: open shrubland; (c) DBF: deciduous broadleaf forest; (d) WSA: woody savanna; (e) WET: wetland; (f) MF: mixed forest; (g) SAV: savanna; (h) CRO: cropland; (i) GRA: grassland; (j) ENF: evergreen needleleaf forest. The numbers inside brackets following the land-cover types represent the number of FLUXNET sites selected for the corresponding vegetation type
图 4 不同地表覆盖类型多年月平均感热通量的多站点模拟与观测对比散点图:(a)EBF;(b)OSH;(c)DBF;(d)WSA;(e)WET;(f)MF;(g)SAV;(h)CRO;(i)GRA;(j)ENF
Figure 4. Scatter plots of monthly sensible heat flux between simulation and observation for sites in different land cover types: (a) EBF; (b) OSH; (c) DBF; (d) WSA; (e) WET; (f) MF; (g) SAV; (h) CRO; (i) GRA; (j) ENF
图 9 不同地表覆盖类型感热通量模拟值与观测值的多年平均日变化对比:(a)EBF;(b)OSH;(c)DBF;(d)WSA;(e)WET;(f)MF;(g)SAV;(h)CRO;(i)GRA;(j)ENF
Figure 9. Comparison between the observed and simulated sensible heat flux on a diurnal course in different land cover types (monthly average over many years): (a) EBF; (b) OSH; (c) DBF; (d) WSA; (e) WET; (f) MF; (g) SAV; (h) CRO; (i) GRA; (j) ENF
图 10 不同地表覆盖类型感热通量的多年平均日变化在不同季节春季(MAM)、夏季(JJA)、秋季(SON)、冬季(DJF)的模拟偏差(模拟减观测):(a)EBF;(b)OSH;(c)DBF;(d)WSA;(e)WET:(f)MF;(g)SAV;(h)CRO;(i)GRA;(j)ENF
Figure 10. Bias (simulation minus observation) of the simulated multi-annual average diurnal variation of sensible heat flux in different land cover types in spring (March–April–May, MAM), summer (June–July–August, JJA), autumn (September–October–November, SON), and winter (December–January–February, DJF): (a) EBF; (b) OSH; (c) DBF; (d) WSA; (e) WET; (f) MF; (g) SAV; (h) CRO; (i) GRA; (j) ENF
图 15 CoLM对10种地表覆盖类型(1:CRO;2:DBF;3:ENF;4:WET;5:GRA;6:MF;7:SAV;8:EBF;9:WSA;10:OSH)的(a)感热通量、(b)潜热通量、(c)净辐射在不同时间尺度(半小时、月、年)上的模拟能力对比泰勒图
Figure 15. Taylor diagrams of the CoLM performance for (a) sensible heat flux, (b) latent heat flux, and (c) net radiation, based on time scales of stepwise, monthly, and yearly in different land cover types (1: CRO; 2: DBF; 3: ENF; 4: WET; 5: GRA; 6: MF; 7: SAV; 8: EBF; 9: WSA; 10: OSH)
图 16 CoLM在10种地表覆盖类型模拟的感热通量(H)、潜热通量(LE)、净辐射(Rnet)在不同时间尺度(半小时、月、年)的(a)RMSE和(b)MAE
Figure 16. Performance of the CoLM in simulating sensible heat flux (H), latent heat flux (LE), and net radiation (Rnet) on time scales of stepwise, monthly, and yearly measured using the RMSE and MAE (W/m²) calculated in different land cover types
表 1 FLUXNET站点信息
Table 1. FLUXNET site information
站点 气候型 气候带 降水量/
mm a−1平均温
度/°C纬度 经度 观测年 地表覆盖类型(USGS) AU-Tum Cfb 温带海洋性气候 1159 10.7 35.7°S 148.2°E 2002~2005年 常绿阔叶林 AU-How Aw 冬干型热带草原气候 1449 27.0 12.5°S 131.2°E 2003~2005年 稀树林地 BE-Lon Cfb 温带海洋性气候 800 10 50.6°N 4.7°E 2004~2007年 农田 BE-Bra Cfb 温带海洋性气候 750 9.8 51.3°N 4.5°E 2000~2002年 混交林 BW-Mal BSh 热带半干旱气候 493 22.4 19.9°S 23.6°E 1999~2001年 稀树林地 CA-Mer Dfb 温夏型湿润气候 891 6.1 45.4°N 75.5°W 2000~2005年 湿地 CA-Qfo Dfc 亚寒带湿润气候 962.32 −0.36 49.7°N 74.3°W 2003~2005年 常绿针叶林 CA-SF3 Dfc 亚寒带湿润气候 470 0.4 54.1°N 106.0°W 2003~2005年 稀疏灌木林 CA-NS2 Dfc 亚寒带湿润气候 499.82 −2.88 55.9°N 98.5°W 2002~2005年 常绿针叶林 CA-NS1 Dfc 亚寒带湿润气候 500.29 −2.89 55.8°N 98.4°W 2002~2005年 常绿针叶林 CA-Man Dfc 亚寒带湿润气候 520 −3.2 55.9°N 98.5°W 2000~2003年 常绿针叶林 DE-Tha Cfb 温带海洋性气候 643 8.1 51.0°N 13.6°E 1998~2005年 常绿针叶林 DE-Geb Cfb 温带海洋性气候 470 8.5 51.1°N 10.9°E 2004~2005年 农田 ES-LMa Csa 热夏型地中海气候 370 16.5 39.9°N 5.8°W 2004~2005年 稀树林地 FI-Hyy Dfc 亚寒带湿润气候 620 2.2 61.8°N 24.3°E 2001~2004年 常绿针叶林 FI-Kaa Dfc 亚寒带湿润气候 454 −1.4 69.1°N 27.3°E 2004~2005年 湿地 IT-MBo Cfb 亚寒带湿润气候 1214 5.1 46.0°N 11.0°E 2003~2007年 草地 IT-Amp Cfa 温带海洋性气候 945 10.6 41.9°N 13.6°E 2003~2005年 草地 IT-Cpz Csa 温带海洋性气候 780 15.6 41.7°N 12.4°E 2006~2008年 常绿阔叶林 IT-Lav Cfb 温带海洋性气候 1291 7.8 45.9°N 11.3°E 2004~2007年 常绿针叶林 US-Bo1 Dfa 热夏型温带湿润气候 991 11.0 40.0°N 88.3°W 1998~2005年 农田 US-Ha1 Dfb 温夏型湿润气候 1071 11.0 40.0°N 88.3°W 1996~2002年 落叶阔叶林 US-Blo Csa 热夏型地中海气候 1380 11.2 38.9°N 120.6°W 2000~2005年 常绿针叶林 US-FPe BSk 凉爽半干旱气候 335 5.5 48.3°N 105.1°W 2000~2005年 草地 US-Var Csa 热夏型地中海气候 544 15.9 38.4°N 121.0°W 2001~2005年 草地 US-Syv Dfb 温夏型湿润气候 826 3.8 46.2°N 89.3°W 2002~2005年 混交林 US-Goo Cfa 亚热带湿润气候 1425.77 15.89 34.3°N 89.9°W 2002~2005年 草地 US-Ton Csa 热夏型地中海气候 559 15.8 38.4°N 120.9°W 2001~2005年 有林草地 US-ARM Cfa 亚热带湿润气候 843 14.76 36.6°N 97.5°W 2003~2005年 农田 ZA-Kru Cwa 亚热带季风性湿润气候 525 22.2 25.0°S 31.5°E 2002~2003年 稀树林地 表 2 不同地表覆盖类型感热通量的年尺度变化模拟与观测评估
Table 2. Evaluation of the annual variability of sensible heat flux in different land cover types between simulation and observation
地表覆
盖类型样本数 感热通量模拟年
平均值/W m−2感热通量观测年
平均值/W m−2绝对误差/
W m−2相对误差 相关系数 均方根误差/
W m−2EBF 7 39.31 51.26 −11.95 −23.30% 0.14 16.89 OSH 3 22.48 31.09 −8.61 −27.69% 0.73 8.75 DBF 6 15.97 34.10 −18.13 −53.17% 0.53 32.11 WSA 5 52.40 59.03 −6.63 −11.23% 0.75 8.29 WET 8 4.42 19.04 −14.62 −76.79% 0.30 47.78 MF 7 14.29 12.97 1.32 10.18% 0.81* 5.11 SAV 10 68.07 51.35 16.72 32.56% 0.89* 16.37 CRO 17 23.35 20.36 2.99 14.69% 0.92* 8.19 GRA 23 32.89 23.43 9.46 40.38% 0.84* 14.33 ENF 37 20.37 33.90 −13.53 −39.91% 0.83* 14.46 全部 123 28.27 31.91 −3.64 −11.40% 0.71 17.23 注:EBF表示常绿阔叶林,OSH表示稀疏灌木林,DBF表示落叶阔叶林,WSA表示有林草地,WET表示永久湿地,MF表示混交林,SAV表示稀树林地,CRO表示农田,GRA表示草地,ENF表示常绿针叶林;*表示相关系数通过0.01显著性检验;下同。 表 3 不同地表覆盖类型潜热通量的年尺度变化模拟与观测评估
Table 3. Evaluation of the annual variability of latent heat flux in different land cover types between simulation and observation
地表覆
盖类型样本数 潜热通量模拟年
平均值/W m−2潜热通量观测年
平均值/W m−2绝对误差/W m−2 相对误差 相关系数 均方根误差/
W m−2EBF 7 48.33 44.47 3.86 8.70% 0.64 17.82 OSH 3 23.08 24.54 −1.45 −5.91% 0.75 2.52 DBF 6 40.10 35.89 4.21 11.73% 0.48 5.13 WSA 5 33.67 30.32 3.35 11.05% 0.68 4.37 WET 8 55.80 30.96 24.85 80.26% −0.92 37.45 MF 7 39.22 22.30 16.92 0.76% −0.87 22.85 SAV 10 37.35 45.50 −8.15 −17.91% 0.96* 11.45 CRO 17 42.36 39.28 3.08 7.84% 0.79* 12.21 GRA 23 39.17 34.27 4.90 14.30% 0.76* 13.03 ENF 37 34.57 31.22 3.35 10.73% 0.77* 10.44 全部 123 39.12 34.32 4.79 13.96% 0.57* 13.73 表 4 不同地表覆盖类型净辐射的年尺度变化模拟与观测评估
Table 4. Evaluation of the annual variability of net radiation in different land cover types between simulation and observation
地表覆
盖类型样本数 净辐射模拟年
平均值/W m−2净辐射观测年
平均值/W m−2绝对误差/W m−2 相对误差 相关系数 均方根误差/
W m−2EBF 7 90.31 88.21 2.10 2.38% 0.79* 6.81 OSH 3 24.54 51.01 −26.47 −51.89% 0.42 4.92 DBF 6 43.75 76.10 −32.35 −42.51% 0.53 32.99 WSA 5 86.43 95.51 −9.09 −9.52% 0.34 10.73 WET 8 43.92 64.27 −20.35 −31.66% 0.67 22.32 MF 7 54.58 60.94 −6.37 −10.45% 0.42 6.73 SAV 10 105.78 112.22 −6.44 −5.74% 0.95* 14.03 CRO 17 66.39 76.94 −10.54 −13.70% 0.52 20.48 GRA 23 72.54 61.44 11.10 18.07% 0.58 20.52 ENF 37 56.47 76.58 −20.11 −26.26% 0.87* 25.46 全部 123 66.22 76.08 −9.86 −12.96% 0.62* 16.50 表 5 不同地表覆盖类型下感热、潜热、净辐射通量的平均归一化模拟偏差
Table 5. Mean normalized simulation bias of sensible and latent heat fluxes and net radiation flux in different land cover types
EBF(2) OSH(1) DBF(1) WSA(1) WET(2) MF(2) SAV(4) CRO(4) GRA(5) ENF(8) 感热通量 −0.02 −0.01 −0.21 −0.03 −0.42 −0.05 0.06 0.02 0.06 0.03 潜热通量 0.01 −0.13 0.15 0.21 0.15 0.06 −0.03 −0.04 −0.05 0.04 净辐射 −0.05 −0.08 −0.02 −0.23 −0.12 0.20 −0.03 0.12 0.19 −0.08 -
[1] Baldocchi D, Falge E, Gu L H, et al. 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities [J]. Bull. Amer. Meteor. Soc., 82(11): 2415−2434. doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2 [2] Bonan G B. 1996. A land surface model (LSM Version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and User’s Guide [R]. NCAR Tech. Note, NCAR/TN-417+STR, 150pp. [3] Bonan G B. 2015. Ecological Climatology: Concepts and Applications [M]. 3rd ed. Cambridge: Cambridge University Press. [4] Collatz G J, Ball J T, Grivet C, et al. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer [J]. Agricultural and Forest Meteorology, 54(2–4): 107–136, doi: 10.1016/0168-1923(91)90002-8 [5] Dai Y J, Dickinson R E, Wang Y P. 2004. A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance [J]. J. Climate, 17(12): 2281−2299. doi:10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2 [6] Dai Y J, Zeng Q C. 1997. A land surface model (IAP94) for climate studies part I: Formulation and validation in off-line experiments [J]. Adv. Atmos. Sci., 14(4): 433−460. doi: 10.1007/s00376-997-0063-4 [7] Dai Y J, Zeng X B, Dickinson R E, et al. 2003. The common land model [J]. Bull. Amer. Meteor. Soc., 84(8): 1013−1024. doi: 10.1175/BAMS-84-8-1013 [8] 戴永久, 魏楠, 黄安宁, 等. 2018. 通用陆面模式(CoLM)湖泊过程方案与性能评估[J]. 科学通报, 63(28−29): 3002−3021Dai Yongjiu, Wei Nan, Huang Anning, et al. 2018. The lake scheme of the Common Land Model and its performance evaluation [J]. Chinese Science Bulletin (in Chinese), 63(28−29): 3002−3021. doi: 10.1360/N972018-00609 [9] Dickinson R E, Henderson-Sellers A, Kennedy P J. 1993. Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR community climate model [R]. NCAR Tech. Note, NCAR/TN-387+STR, 72pp. [10] Groenendijk M, Dolman A J, van der Molen M K, et al. 2011. Assessing parameter variability in a photosynthesis model within and between plant functional types using global FLUXNET eddy covariance data [J]. Agricultural and Forest Meteorology, 151(1): 22−38. doi: 10.1016/j.agrformet.2010.08.013 [11] Huang C L, Li X, Gu J. 2008. Estimation of regional soil moisture by assimilating multi-sensor passive microwave remote sensing observations based on ensemble Kalman filter [C]//2008 IEEE International Geoscience and Remote Sensing Symposium. Boston, MA: IEEE, III-1052–III-1055,doi: 10.1109/IGARSS.2008.4779534 [12] IPCC. 2019. Summary for policymakers [M]//Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Shukla P R, Skea J, Calvo Buendia E, et al, Eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. [13] Ji D, Wang L, Feng J, et al. 2014. Description and basic evaluation of BNU-ESM version 1 [J]. Geosci. Model Dev. Discuss., 7(2): 1601−1647. doi: 10.5194/gmdd-7-1601-2014 [14] Kiehl J T, Hack J J, Bonan G B, et al. 1996. Description of the NCAR Community Climate Model (CCM3) [R]. NCAR Tech. Note, NCAR/TN-420+STR, 112pp. [15] Liang X Z, Xu M, Yuan X, et al. 2012. Regional climate–weather research and forecasting model [J]. Bull. Amer. Meteor. Soc., 93(9): 1363−1387. doi: 10.1175/BAMS-D-11-00180.1 [16] 刘少锋, 林朝晖, 蒋星, 等. 2009. IAP大气-植被耦合模式的建立及其模拟 [J]. 气候与环境研究, 14(3): 258−272. doi: 10.3878/j.issn.1006-9585.2009.03.03Liu Shaofeng, Lin Zhaohui, Jiang Xing, et al. 2009. The IAP coupled atmosphere vegetation model and its numerical simulation [J]. Climatic and Environmental Research (in Chinese), 14(3): 258−272. doi: 10.3878/j.issn.1006-9585.2009.03.03 [17] 罗斯琼, 吕世华, 张宇, 等. 2008. CoLM模式对青藏高原中部BJ站陆面过程的数值模拟 [J]. 高原气象, 27(2): 259−271.Luo Siqiong, Lü Shihua, Zhang Yu, et al. 2008. Simulation analysis on land surface process of BJ site of Central Tibetan Plateau using CoLM [J]. Plateau Meteorology (in Chinese), 27(2): 259−271. [18] 马灵玲. 2005. 通用陆面模式CoLM估算地表蒸散[D]. 中国科学院中国遥感卫星地面站硕士学位论文. MaLingling. 2005. Estimation of Regional ET with the Common Land Model[D]. M. S. thesis (in Chinese), China Remote Sensing Satellite Ground Station, Chinese Academy of Sciences [19] Meng C L, Li Z L, Zhan X, et al. 2009. Land surface temperature data assimilation and its impact on evapotranspiration estimates from the Common Land Model [J]. Water Resour. Res., 45(2): W02421. doi: 10.1029/2008WR006971 [20] Pastorello G, Trotta C, Canfora E, et al. 2020. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data [J]. Scientific Data, 7(1): 225. doi: 10.1038/s41597-020-0534-3 [21] 彭静漫, 刘少锋, 戴永久, 等. 2020. 基于陆面模式基准平台ILAMB对陆面模式CoLM的评估 [J]. 气候与环境研究, 25(6): 649−666. doi: 10.3878/j.issn.1006-9585.2020.20021Peng Jingman, Liu Shaofeng, Dai Yongjiu, et al. 2020. Evaluation of common land model based on international land model benchmarking system [J]. Climatic and Environmental Research (in Chinese), 25(6): 649−666. doi: 10.3878/j.issn.1006-9585.2020.20021 [22] Shangguan W, Dai Y J, Duan Q Y, et al. 2014. A global soil data set for earth system modeling [J]. J. Adv. Model. Earth Syst., 6(1): 249−263. doi: 10.1002/2013MS000293 [23] 宋耀明, 郭维栋, 张耀存, 等. 2009. 陆面过程模式CoLM和NCAR_CLM3.0对中国典型森林生态系统陆气相互作用的模拟Ⅰ. 不同模式模拟结果的初步分析 [J]. 气候与环境研究, 14(3): 229−242. doi: 10.3878/j.issn.1006-9585.2009.03.01Song Yaoming, Guo Weidong, Zhang Yaocun, et al. 2009. Performances of CoLM and NCAR_CLM3.0 in simulating land-atmosphere interactions over typical forest ecosystems in China Part I. Preliminary analysis of the simulations based on different models [J]. Climatic and Environmental Research (in Chinese), 14(3): 229−242. doi: 10.3878/j.issn.1006-9585.2009.03.01 [24] Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram [J]. J. Geophys. Res., 106(D7): 7183−7192. doi: 10.1029/2000JD900719 [25] Twine T E, Kustas W P, Norman J M, et al. 2000. Correcting eddy-covariance flux underestimates over a grassland [J]. Agricultural and Forest Meteorology, 103(3): 279−300. doi: 10.1016/S0168-1923(00)00123-4 [26] Wilson K, Goldstein A, Falge E, et al. 2002. Energy balance closure at FLUXNET sites [J]. Agricultural and Forest Meteorology, 113(1–4): 223–243,doi: 10.1016/S0168-1923(02)00109-0 [27] Xin Q C, Zhou X W, Wei N, et al. 2020. A semiprognostic phenology model for simulating multidecadal dynamics of global vegetation leaf area index [J]. Journal of Advances in Modeling Earth Systems, 12(7): e2019MS001935. doi: 10.1029/2019MS001935 [28] Yuan H, Dai Y J, Xiao Z Q, et al. 2011. Reprocessing the MODIS leaf area index products for land surface and climate Modelling [J]. Remote Sens. Environ., 115(5): 1171−1187. doi: 10.1016/j.rse.2011.01.001 [29] 曾庆存, 林朝晖. 2010. 地球系统动力学模式和模拟研究的进展 [J]. 地球科学进展, 25(1): 1−6. doi: 10.11867/j.issn.1001-8166.2010.01.0001Zeng Qingcun, Lin Zhaohui. 2010. Recent progress on the earth system dynamical model and its numerical simulations [J]. Advances in Earth Science (in Chinese), 25(1): 1−6. doi: 10.11867/j.issn.1001-8166.2010.01.0001 [30] Zhang X X, Dai Y J, Cui H Z, et al. 2017. Evaluating common land model energy fluxes using FLUXNET data [J]. Adv. Atmos. Sci., 34(9): 1035−1046. doi: 10.1007/s00376-017-6251-y [31] Zhu J W, Zeng X D, Zhang M H, et al. 2018. Evaluation of the new dynamic global vegetation model in CAS-ESM [J]. Adv. Atmos. Sci., 35(6): 659−670. doi: 10.1007/s00376-017-7154-7 -