Spatial and Temporal Characteristics of Annual and Seasonal Rainstorms in South China during 1961–2018
-
摘要: 利用中国2400余个国家级气象台站观测数据插值得到的1961~2018年逐日网格降水资料,综合运用回归分析和Morlet小波变换等方法,分析了华南多年暴雨和区域性暴雨的时空变化特征,揭示了华南暴雨的变化规律。结果表明:1961~2018年,华南全年暴雨日数和暴雨雨量大值区域分布在广东、广西、福建沿海一带及海南省和广西北部,夏季暴雨日数和暴雨雨量最大,其次是春季。在广西北部至广西、湖南、广东三省交界处、广东南部、福建和海南省,全年暴雨日数、雨量和强度的增加趋势最显著,夏季的区域平均值增长速率最大,其次是秋季。华南区域性暴雨日数和过程数呈单峰型分布,一年中均可出现,最大值出现在6月。区域性暴雨日数和过程数多年平均值为28 d a−1和16.5 a−1,上升速率分别为0.15 d a−1和0.097 a−1,四季中夏季的上升速率最快,最慢的是秋季。平均单次过程持续日数和最大单次过程持续日数在冬季均以0.015 d a−1的速率显著上升,在春季却呈现下降的趋势。华南暴雨和区域性暴雨各要素在全年和四季的波动变化中不同程度地表现出准3 a、准14 a和准18 a的周期变化,2000年后,全年暴雨和区域性暴雨各要素准18 a的长周期和准3 a的短周期振荡非常显著。Abstract: The daily grid precipitation data from 1961 to 2018 were obtained by interpolating data from more than 2400 national meteorological stations in China. Based on this data set, regression analysis, Morlet wavelet transform, and other methods are employed to analyze the spatial and temporal characteristics of the rainstorm and regional rainstorm in South China; moreover, the variation laws of heavy precipitation are revealed. Results show that from 1961 to 2018, the maximum number of annual rainstorm days and amount of rainstorm rainfall in South China are distributed in the coastal areas of Guangdong, Guangxi, and Fujian, as well as Hainan Province and the northern part of Guangxi. The number of rainstorm days and amount of rainfall are the largest in summer, followed by spring. From the northern part of Guangxi to the junction of Guangxi, Hunan, and Guangdong provinces, the southern part of Guangdong, Fujian, and Hainan provinces, the increasing trend of rainstorm days, rainfall, and intensity are the most significant. The regional mean increasing trend is the highest in summer, followed by autumn. Additionally, the number of regional rainstorm days and processes in South China presents the occurrence of a single peak distribution, which could occur throughout the year. Moreover, the maximum value appears in June. The annual average number of regional rainstorm days and processes are 28 d a−1 and 16.5 a−1, and the increasing rates are 0.15 d a−1 and 0.097 a−1. In four seasons, the increasing rate is the fastest during summer and the slowest in autumn. The average and maximum of a single course duration increase significantly at the rate of 0.015 d a−1 in winter but show a decreasing trend in spring. For the periodic change, the South China rainstorm and regional rainstorm show quasi-three-year, quasi-14-year, and quasi-18-year cycle changes to different degrees in annual and seasonal fluctuations. After 2000, the quasi-18-year long period and quasi-three-year short-period oscillations of annual rainstorms and regional rainstorms are extremely significant.
-
Key words:
- South China /
- Rainstorm /
- Regional rainstorm /
- Spatial and temporal characteristics
-
图 1 1961~2018年华南全年和四季暴雨日数(左图)、暴雨雨量(右图)多年平均的空间分布:(a、f)全年;(b、g)春季;(c、h)夏季;(d、l)秋季;(e、j)冬季。暴雨日数和暴雨雨量全年的单位分别是2 d和2 mm,冬季分别是0.1 d和0.1 mm,春季、夏季、秋季分别是d和mm
Figure 1. Spatial distribution of annual and seasonal rainstorm days (left column) and rainstorm rainfall (right column) in South China during 1961–2018: (a, f) Annual; (b, g) spring; (c, h) summer; (d, l) autumn; (e, j) winter. The units of rainstorm days and rainfall are 2 d and 2 mm in annual, 0.1 d and 0.1 mm in winter, d and mm in spring, summer and autumn, respectively
图 2 1961~2018年华南全年、四季暴雨日数变化趋势的空间分布(左图,加点区域通过0.05显著性水平检验)和区域平均的暴雨日数距平时间序列(右图):(a、b)全年;(c、d)冬季;(e、f)春季;(g、h)夏季;(i、j)秋季
Figure 2. Spatial distribution of annual and seasonal rainstorm day trends (left column, the black dots are the grid points that passed the 0.05 level significance test) and regional mean rainstorm day anomalies (right column) in South China during 1961–2018: (a, b) Annual; (c, d) winter; (e, f) spring; (g, h) summer; (i, j) autumn
图 3 1961~2018年华南全年、四季暴雨雨量变化趋势的空间分布(左图,加点区域通过0.05显著性水平检验)和区域平均的暴雨雨量距平时间序列(右图):(a、b)全年;(c、d)冬季;(e、f)春季;(g、h)夏季;(i、j)秋季
Figure 3. Spatial distribution of annual and seasonal rainstorm rainfall trends (left column, the black dots are the grid points that passed the 0.05 level significance test) and regional mean rainstorm rainfall anomalies (right column) in South China during 1961–2018: (a, b) Annual; (c, d) winter; (e, f) spring; (g, h) summer; (i, j) autumn
图 4 1961~2018年华南全年、四季暴雨强度变化趋势的空间分布(左图,加点区域通过0.05显著性水平检验)和区域平均的暴雨强度距平时间序列(右图):(a、b)全年;(c、d)冬季;(e、f)春季;(g、h)夏季;(i、j)秋季
Figure 4. Spatial distribution of annual and seasonal rainstorm intensity trends (left column, the black dots are the grid points that passed the 0.05 level significance test) and regional mean rainstorm intensity anomalies (right column) in South China during 1961–2018: (a, b) Annual; (c, d) winter; (e, f) spring; (g, h) summer; (i, j) autumn
图 6 1961~2018年华南区域性暴雨日数(左列)和区域性暴雨过程数(右列)全年和四季的时间序列:(a、f)全年;(b、g)春季;(c、h)夏季;(d、i)秋季;(e、j)冬季。红色实线为一元线性回归拟合,蓝色虚线为均值
Figure 6. Annual and seasonal time series of the regional rainstorm day (left column) and regional rainstorm process (right column) in South China during 1961–2018: (a, f) Annual; (b, g) winter; (c, h) spring; (d, i) summer; (e, j) autumn. The red solid line is the unary linear regression fitting, and the blue dash line is the mean
图 7 1961~2018年华南平均单次区域性暴雨过程持续日数(左列)和最大单次区域性暴雨过程持续日数(右列)年和四季的时间序列:(a、f)全年;(b、g)春季;(c、h)夏季;(d、i)秋季;(e、j)冬季。红色实线为一元线性回归拟合,蓝色虚线为均值
Figure 7. Annual and seasonal time series of the average duration (left column) and the maximum rainstorm process duration days (right column) of single progress in South China during 1961–2018: (a, f) Annual; (b, g) winter; (c, h) spring; (d, i) summer; (e, j) autumn. The red solid line is the unary linear regression fitting, and the blue dash line is the mean
图 8 1961~2018年(a)全年、(b)冬季、(c)春季、(d)夏季、(e)秋季华南暴雨日数的逐年小波功率谱(左图,加点区域通过0.05显著性水平检验)和总体小波功率谱(右图)
Figure 8. (a) Annual, (b) winter, (c) spring, (d) summer, and (e) autumn wavelet power spectrum (left, the black dots are the grid points that passed the 0.05 level significance test) and the total wavelet power spectrum (right) of rainstorm days in South China during 1961–2018
图 9 1961~2018年(a)全年、(b)冬季、(c)春季、(d)夏季、(e)秋季华南区域性暴雨过程数的逐年小波功率谱(左图,加点区域通过0.05显著性水平检验)和总体小波功率谱(右图)
Figure 9. (a) Annual, (b) winter, (c) spring, (d) summer, and (e) autumn wavelet power spectrum (left, the black dots are the grid points that passed the 0.05 level significance test) and the total wavelet power spectrum (right panels) of regional rainstorm progresses in South China during 1961–2018
表 1 1961~2018年华南区域性暴雨各要素的气候倾向率
Table 1. Climatic tendency rate of the regional rainstorm in South China during 1961–2018
气候倾向率 区域性暴雨日数/d a−1 区域性暴雨过程数/ a−1 平均单次过程持续日数/d a−1 最大单次过程持续日数/d a−1 全年 0.150* 0.097* −0.0003 0.002 冬季 0.020* 0.014* 0.015* 0.015* 春季 0.019* 0.030* −0.004* −0.013* 夏季 0.092* 0.049* −0.001 0.005 秋季 0.019* 0.004 0.007* 0.007 *表示通过0.05的显著性水平检验。 -
[1] Alexander L V, Zhang X, Peterson T C, et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation [J]. J. Geophys. Res. :Atmos., 111(D5): D05109. doi: 10.1029/2005JD006290 [2] Asadieh B, Krakauer N Y. 2015. Global trends in extreme precipitation: Climate models versus observations [J]. Hydrol. Earth Syst. Sci., 19(2): 877−891. doi: 10.5194/hess-19-877-2015 [3] Bohlinger P, Sorteberg A, Liu C H, et al. 2019. Multiscale characteristics of an extreme precipitation event over Nepal [J]. Quart. J. Roy. Meteor. Soc., 145(718): 179−196. doi: 10.1002/qj.3418 [4] Bouwer L M. 2013. Projections of future extreme weather losses under changes in climate and exposure [J]. Risk Analysis, 33(5): 915−930. doi: 10.1111/j.1539-6924.2012.01880.x [5] 陈少勇, 张晓芬, 郭俊瑞, 等. 2015. 中国南方暴雨日数的气候变化特征 [J]. 气候变化研究快报, 4(4): 228−236. doi: 10.12677/ccrl.2015.44026Chen Shaoyong, Zhang Xiaofen, Guo Junrui, et al. 2015. Climate change characteristics of rainstorm days in South China [J]. Climate Change Research Letters (in Chinese), 4(4): 228−236. doi: 10.12677/ccrl.2015.44026 [6] Chen Y L, Li J. 1995. Large-scale conditions favorable for the development of heavy rainfall during TAMEX IOP 3 [J]. Mon. Wea. Rev., 123(10): 2978−3002. doi:10.1175/1520-0493(1995)123<2978:LSCFFT>2.0.CO;2 [7] Chen Y, Zhai P M. 2013. Persistent extreme precipitation events in China during 1951–2010 [J]. Climate Research, 57(2): 143−155. doi: 10.3354/cr01171 [8] Chu Q C, Wang Q G, Qiao S B, et al. 2017. Spatial–temporal characteristics of the “cumulative effect” of torrential rain over South China [J]. Theor. Appl. Climatol., 127(3): 911−921. doi: 10.1007/s00704-015-1669-6 [9] Chu Q C, Wang Q G, Qiao S B, et al. 2018. Feature analysis and primary causes of pre-flood season “cumulative effect” of torrential rain over South China [J]. Theor. Appl. Climatol., 131(1-2): 91−100. doi: 10.1007/s00704-016-1947-y [10] 丁一汇, 张建云. 2009. 暴雨洪涝 [M]. 北京: 气象出版社. Ding Yihui, Zhang Jianyun. 2009. Torrential Rain and Flood (in Chinese) [M]. Beijing: China Meteorological Press. [11] Dougherty E, Rasmussen K L. 2019. Climatology of flood-producing storms and their associated rainfall characteristics in the United States [J]. Mon. Wea. Rev., 147(11): 3861−3877. doi: 10.1175/MWR-D-19-0020.1 [12] Eden J M, Kew S F, Bellprat O, et al. 2018. Extreme precipitation in the Netherlands: An event attribution case study [J]. Weather and Climate Extremes, 21: 90−101. doi: 10.1016/j.wace.2018.07.003 [13] Frich P, Alexander L V, Della-Marta P, et al. 2002. Observed coherent changes in climatic extremes during the second half of the twentieth century [J]. Climate Research, 19(3): 193−212. doi: 10.3354/cr019193 [14] He L Q, Hao X, Li H, et al. 2021. How do extreme summer precipitation events over eastern China subregions change? [J]. Geophys. Res. Lett., 48(5): e2020GL091849. doi: 10.1029/2020GL091849 [15] Hettiarachchi S, Wasko C, Sharma A. 2018. Increase in flood risk resulting from climate change in a developed urban watershed-the role of storm temporal patterns [J]. Hydrology and Earth System Sciences, 22(3): 2041−2056. doi: 10.5194/hess-22-2041-2018 [16] Houze R A Jr. 2004. Mesoscale convective systems [J]. Rev. Geophys., 42(4): RG4003. doi: 10.1029/2004RG000150 [17] Huang L, Luo Y L, Zhang D L. 2018. The relationship between anomalous presummer extreme rainfall over South China and synoptic disturbances [J]. J. Geophys. Res. :Atmos., 123(7): 3395−3413. doi: 10.1002/2017JD028106 [18] Iwasaki H. 2015. Increasing trends in heavy rain during the warm season in eastern Japan and its relation to moisture variation and topographic convergence [J]. International Journal of Climatology, 35(8): 2154−2163. doi: 10.1002/joc.4115 [19] 蒋鹏, 王大刚, 陈晓宏. 2015. 广东省近50年极端降水事件的时空特征及成因分析 [J]. 水文, 35(2): 77−84. doi: 10.3969/j.issn.1000-0852.2015.02.017Jiang Peng, Wang Dagang, Chen Xiaohong. 2015. Spatial–temporal characteristics of extreme precipitation and its causes in Guangdong province in recent 50 years [J]. Journal of China Hydrology (in Chinese), 35(2): 77−84. doi: 10.3969/j.issn.1000-0852.2015.02.017 [20] Li J, Yu R C, Zhou T J. 2008. Seasonal variation of the diurnal cycle of rainfall in southern contiguous China [J]. J. Climate, 21(22): 6036−6043. doi: 10.1175/2008JCLI2188.1 [21] 李艳兰, 黄卓, 何洁琳, 等. 2020. 1961~2017年广西区域性暴雨过程变化特征 [J]. 气象与环境学报, 36(1): 51−57. doi: 10.3969/j.issn.1673503X.2020.01.007Li Yanlan, Huang Zhuo, He Jielin, et al. 2020. Characteristics of the regional rainstorm processes in Guangxi during 1961−2017 [J]. Journal of Meteorology and Environment (in Chinese), 36(1): 51−57. doi: 10.3969/j.issn.1673503X.2020.01.007 [22] 刘雨佳, 张强, 余予. 2017. 华南地区1961~2014年暴雨及典型暴雨事件统计分析 [J]. 暴雨灾害, 36(1): 26−32. doi: 10.3969/j.issn.1004-9045.2017.01.004Liu Yujia, Zhang Qiang, Yu Yu. 2017. Analysis of heavy rain and typical torrential rain event in southern China during 1961–2014 [J]. Torrential Rain and Disasters (in Chinese), 36(1): 26−32. doi: 10.3969/j.issn.1004-9045.2017.01.004 [23] 罗艳艳, 何金海, 邹燕, 等. 2015. 华南前汛期雨涝强、弱年的确定及其环流特征对比 [J]. 气象科学, 35(2): 160−166. doi: 10.3969/2014jms.0080Luo Yanyan, He Jinhai, Zou Yan, et al. 2015. Determination of strong and weak rain-waterlogging years in pre-rainy season over South China and their circulation features comparison [J]. Journal of the Meteorological Sciences (in Chinese), 35(2): 160−166. doi: 10.3969/2014jms.0080 [24] Luo Y L, Sun J S, Li Y, et al. 2020a. Science and prediction of heavy rainfall over China: Research progress since the reform and opening-up of new China [J]. J. Meteor. Res., 34(3): 427−459. doi: 10.1007/s13351-020-0006-x [25] Luo Y L, Xia R D, Chan J C L. 2020b. Characteristics, physical mechanisms, and prediction of pre-summer rainfall over South China: Research progress during 2008-2019 [J]. J. Meteor. Soc. Japan Ser. II, 98(1): 19−42. doi: 10.2151/jmsj.2020-002 [26] Mahapatra B, Walia M, Saggurti N. 2018. Extreme weather events induced deaths in India 2001−2014: Trends and differentials by region, sex and age group [J]. Weather and Climate Extremes, 21: 110−116. doi: 10.1016/j.wace.2018.08.001 [27] Nayak M A. 2016. Heavy rainfall and flooding associated with atmospheric rivers over the central United States [D]. Ph. D. dissertation, University of Iowa. doi: 10.17077/etd.31vtkgg7 [28] 牛若芸, 刘凑华, 刘为一, 等. 2018. 1981~2015年中国95°E以东区域性暴雨过程时、空分布特征 [J]. 气象学报, 76(2): 182−195. doi: 10.11676/qxxb2017.092Niu Ruoyun, Liu Couhua, Liu Weiyi, et al. 2018. Characteristics of temporal and spatial distribution of regional rainstorm processes to the east of 95°E in China during 1981–2015 [J]. Acta Meteorologica Sinica (in Chinese), 76(2): 182−195. doi: 10.11676/qxxb2017.092 [29] 钱维宏. 2011. 气候变化与中国极端气候事件图集[M]. 北京: 气象出版社, 146–156.Qian Weihong. 2011. Atlas of Climate Change and China Extreme Climate Events (in Chinese) [M]. Beijing: China Meteorological Press, 146–156. [30] 任国玉, 封国林, 严中伟. 2010. 中国极端气候变化观测研究回顾与展望 [J]. 气候与环境研究, 15(4): 337−353. doi: 10.3878/j.issn.1006-9585.2010.04.01Ren Guoyu, Feng Guolin, Yan Zhongwei. 2010. Progresses in observation studies of climate extremes and changes in mainland China [J]. Climatic and Environmental Research (in Chinese), 15(4): 337−353. doi: 10.3878/j.issn.1006-9585.2010.04.01 [31] Ren F M, Cui D L, Gong Z Q, et al. 2012. An objective identification technique for regional extreme events [J]. J. Climate, 25(20): 7015−7027. doi: 10.1175/JCLI-D-11-00489.1 [32] Siswanto, Van Der Schrier G, Jan Van oldenborgh G, et al. 2017. A very unusual precipitation event associated with the 2015 floods in Jakarta: An analysis of the meteorological factors [J]. Weather and Climate Extremes, 16: 23−28. doi: 10.1016/j.wace.2017.03.003 [33] Song X M, Zou X J, Zhang C H, et al. 2019. Multiscale spatio–temporal changes of precipitation extremes in Beijing–Tianjin–Hebei region, China during 1958–2017 [J]. Atmosphere, 10(8): 462. doi: 10.3390/atmos10080462 [34] 陶诗言. 1980. 中国之暴雨[M]. 北京: 科学出版社, 3–5Tao Shiyan. 1980. Heavy Rain in China (in Chinese) [M]. Beijing: Science Press, 3–5. [35] 陶诗言. 2001. 1998年夏季中国暴雨的形成机理与预报研究 [M]. 北京: 气象出版社. Tao Shiyan. 2001. Study on the Formation Mechanism and Forecast of Heavy Rain in China in Summer of 1998 (in Chinese) [M]. Beijing: China Meteorological Press. [36] Tao Y Y, Wang W, Song S, et al. 2018. Spatial and temporal variations of precipitation extremes and seasonality over China from 1961–2013 [J]. Water, 10(6): 719. doi: 10.3390/w10060719 [37] Tong S Q, Li X Q, Zhang J Q, et al. 2019. Spatial and temporal variability in extreme temperature and precipitation events in Inner Mongolia (China) during 1960-2017 [J]. Sci. Total Environ., 649: 75−89. doi: 10.1016/j.scitotenv.2018.08.262 [38] Touré Halimatou A, Kalifa T, Kyei-Baffour N. 2017. Assessment of changing trends of daily precipitation and temperature extremes in Bamako and Ségou in Mali from 1961–2014 [J]. Weather and Climate Extremes, 18: 8−16. doi: 10.1016/j.wace.2017.09.002 [39] Tu K, Yan Z W, Wang Y. 2011. A spatial cluster analysis of heavy rains in China [J]. Atmospheric and Oceanic Science Letters, 4(1): 36−40. doi: 10.1080/16742834.2011.11446897 [40] Wang F, Yang S, Higgins W, et al. 2014. Long-term changes in total and extreme precipitation over China and the United States and their links to oceanic–atmospheric features [J]. Int. J. Climatol., 34(2): 286−302. doi: 10.1002/joc.3685 [41] 韦志刚, 李娴茹, 刘雨佳, 等. 2021. 1961~2018年华南年和各季极端降水变化特征的比较分析 [J/OL]. 高原气象. https://kns.cnki.net/kcms/detail/62.1061.p.20210126.1552.010.html. Wei Zhigang, Li Xianru, Liu Yujia, et al. 2021. Comparative analysis of the characteristics of annual and seasonal extreme precipitation in South China during 1961–2018 [J/OL]. Plateau Meteorology (in Chinese). https://kns.cnki.net/kcms/detail/62.1061.p.20210126.1552.010.html. [42] 吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比 [J]. 地球物理学报, 56(4): 1102−1111. doi: 10.6038/cjg30130406Wu Jia, Gao Xuejie. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese J. Geophys. (in Chinese), 56(4): 1102−1111. doi: 10.6038/cjg30130406 [43] 伍红雨, 邹燕, 刘尉. 2019. 广东区域性暴雨过程的定量化评估及气候特征 [J]. 应用气象学报, 30(2): 233−244. doi: 10.11898/1001-7313.20190210Wu Hongyu, Zou Yan, Liu Wei. 2019. Quantitative assessment of regional heavy rainfall process in Guangdong and its climatological characteristics [J]. Journal of Applied Meteorological Science (in Chinese), 30(2): 233−244. doi: 10.11898/1001-7313.20190210 [44] Wu J, Gao X J, Giorgi F, et al. 2017. Changes of effective temperature and cold/hot days in late decades over China based on a high resolution gridded observation dataset [J]. International Journal of Climatology, 37: 788−800. doi: 10.1002/joc.5038 [45] Wu M W, Luo Y L, Chen F, et al. 2019. Observed link of extreme hourly precipitation changes to urbanization over coastal South China [J]. J. Appl. Meteor. Climatol., 58(8): 1799−1819. doi: 10.1175/JAMC-D-18-0284.1 [46] Xie Z Q, Du Y, Zeng Y, et al. 2018. Classification of yearly extreme precipitation events and associated flood risk in the Yangtze–Huaihe River valley [J]. Science China Earth Sciences, 61(9): 1341−1356. doi: 10.1007/s11430-017-9212-8 [47] 熊敏诠. 2017. 近60年中国日降水量分区及气候特征 [J]. 大气科学, 41(5): 933−948. doi: 10.3878/j.issn.1006-9895.1703.16169Xiong Minquan. 2017. Climate regionalization and characteristics of daily precipitation in China in recent 60 years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(5): 933−948. doi: 10.3878/j.issn.1006-9895.1703.16169 [48] Xu W X, Zipser E J, Liu C T. 2009. Rainfall characteristics and convective properties of Meiyu precipitation systems over South China, Taiwan, and the South China Sea. Part I: TRMM observations [J]. Mon. Wea. Rev., 137(12): 4261−4275. doi: 10.1175/2009MWR2982.1 [49] 杨荆安, 闵爱荣, 廖移山. 2012. 2011年4~10月我国主要暴雨天气过程简述 [J]. 暴雨灾害, 31(1): 87−95. doi: 10.3969/j.issn.1004-9045.2012.01.014Yang Jin’an, Min Airong, Liao Yishan. 2012. Important heavy rain processes in China from April to October in 2011 [J]. Torrential Rain and Disasters (in Chinese), 31(1): 87−95. doi: 10.3969/j.issn.1004-9045.2012.01.014 [50] 叶殿秀, 王遵娅, 高荣, 等. 2019. 1961~2016年我国区域性暴雨过程的客观识别及其气候特征 [J]. 气候变化研究进展, 15(6): 575−583. doi: 10.12006/j.issn.1673-1719.2018.172Ye Dianxiu, Wang Zunya, Gao Rong, et al. 2019. Objective identification and climatic characters of the regional rainstorm event in China from 1961 to 2016 [J]. Climate Change Research (in Chinese), 15(6): 575−583. doi: 10.12006/j.issn.1673-1719.2018.172 [51] Yin J F, Zhang D L, Luo Y L, et al. 2020. On the extreme rainfall event of 7 May 2017 over the coastal city of Guangzhou. Part I: Impacts of urbanization and orography [J]. Mon. Wea. Rev., 148(3): 955−979. doi: 10.1175/MWR-D-19-0212.1 [52] Yuan Z, Yang Z Y, Yan D H, et al. 2017. Historical changes and future projection of extreme precipitation in China [J]. Theor. Appl. Climatol., 127(1): 393−407. doi: 10.1007/s00704-015-1643-3 [53] Zeder J, Fischer E M. 2020. Observed extreme precipitation trends and scaling in central Europe [J]. Weather and Climate Extremes, 29: 100266. doi: 10.1016/j.wace.2020.100266 [54] 张世轩, 封国林, 赵俊虎. 2013. 长江中下游地区暴雨“积成效应” [J]. 物理学报, 62(6): 069201. doi: 10.7498/aps.62.069201Zhang Shixuan, Feng Guolin, Zhao Junhu. 2013. “Cumulative Effect” of torrential rain in the middle and lower reaches of the Yangtze River [J]. Acta Phys. Sin. (in Chinese), 62(6): 069201. doi: 10.7498/aps.62.069201 [55] Zhang D L, Lin Y H, Zhao P, et al. 2013. The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons [J]. Geophys. Res. Lett., 40(7): 1426−1431. doi: 10.1002/grl.50304 [56] Zhao Y, Xu X D, Zhao T L, et al. 2016. Extreme precipitation events in East China and associated moisture transport pathways [J]. Sci. China Earth Sci., 59(9): 1854−1872. doi: 10.1007/s11430-016-5315-7 [57] Zheng Y G, Xue M, Li B, et al. 2016. Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data [J]. Adv. Atmos. Sci., 33(11): 1218−1232. doi: 10.1007/s00376-016-6128-5 [58] Zhou X Y, Lei W J. 2018. Complex patterns of precipitation and extreme events during 1951−2011 in Sichuan basin, southwestern China [J]. Journal of Mountain Science, 15(2): 340−356. doi: 10.1007/s11629-016-4186-x [59] 邹燕, 叶殿秀, 林毅, 等. 2014. 福建区域性暴雨过程综合强度定量化评估方法 [J]. 应用气象学报, 25(3): 360−364. doi: 10.3969/j.issn.1001-7313.2014.03.014Zou Yan, Ye Dianxiu, Lin Yi, et al. 2014. A quantitative method for assessment of regional heavy rainfall intensity [J]. Journal of Applied Meteorological Science (in Chinese), 25(3): 360−364. doi: 10.3969/j.issn.1001-7313.2014.03.014 -