Future Heatwave Trends in China Based on Multimodel Ensemble
-
摘要: 全球变化导致极端天气事件频发,尤其是高温热浪严重影响我国农业生态系统及人类健康。关于热浪事件的定义一直存在着许多争议,对热浪变化趋势空间分布特征的认识有待进一步提高。本文使用气温日较差、绝对温度与相对温度相结合的热浪指标,基于9个CMIP6气候模式的多模式集合结果,评估了可持续发展情景(SSP1-2.6)、中度发展情景(SSP2-4.5)及常规排放情境(SSP5-8.5)下未来中国高温热浪事件的时空分布及变化特征。结果表明:(1)SSP1-2.6情景下未来热浪事件在2050年前后达到顶峰,之后趋于稳定,而在SSP2-4.5情景下,热浪频次、日数及最长持续时间均呈现上升态势,SSP5-8.5情景下热浪的增长趋势及严重程度均为最高;(2)华南、华中地区未来面临更大的热浪风险,SSP5-8.5情景下的热浪频次及强度约是SSP1-2.6的2倍及以上,SSP2-4.5约是SSP1-2.6的1.5倍;(3)西部干旱/半干旱地区、内蒙古东部干旱地区出现较大范围的热浪,结合本文中热浪定义,预示着夜间变暖是全球变暖的一个重要特征。研究结果有助于理解可持续发展、中等强迫情景下我国未来的热浪频次和强度的变化特征,为区域发展节能减排方案的制定提供有效参考。Abstract: With the intensification of global climate change, extreme weather events will become more frequent, especially heatwaves, seriously affecting agroecosystems and human health. There have been many controversies about the definition of heatwave events, and understanding the spatial distribution characteristics of heatwave trends needs further improvement. Compared with definitions of absolute or relative temperature, this paper adopts a heatwave indicator that considers the daily temperature range and combines both absolute and relative temperature. The spatial distribution and temporal change characteristics of future heatwave events in China were evaluated based on the results of a multimodel ensemble of nine CMIP6 climate models under three different development scenarios: (1) SSP1-2.6, (2) SSP2-4.5, and (3) SSP5-8.5. Results show that (1) future heatwave events under the SSP1-2.6 scenario peaked around 2050 and then stabilized, while the frequency, days, and longest duration of heatwaves under the SSP2-4.5 scenario showed an increasing trend. The growth trend and severity of heatwaves under the SSP5-8.5 scenario are both the highest. (2) South China and Central China will face a greater risk of heatwave occurrence in the future. The frequency and intensity of heatwaves under the SSP5-8.5 scenario are about twice or more than those of SSP1-2.6, while those of SSP2-4.5 are about 1.5 times those of SSP1-2.6. (3) The occurrence of heatwaves of a larger scale in arid/semiarid regions in the west and arid regions in eastern Inner Mongolia, combined with the definition of heatwaves in this paper, predicts that nocturnal warming is an important feature of global warming. Results of the study help to understand the characteristics of future changes in the frequency and intensity of heatwaves in China under sustainable development and medium forcing scenarios and provide effective references for developing energy conservation and emission reduction programs for regional development.
-
Key words:
- Heatwave /
- Trend of heatwave /
- Multimodel ensemble /
- Project
-
图 1 中国主要气候区分布。西部干旱/半干旱区(WAS)、青藏高原地区(QT)、华南地区(S)、华中地区(C)、华北地区(N)、东北地区(NE)、西南地区(SW)和东部干旱区(EA)
Figure 1. Climate subregions across China: Western arid and semiarid region (WAS); Qinghai−Tibet region (QT); southern region (S); center region (C); northern region (N); northeastern region (NE); southwestern region (SW); eastern arid region (EA)
图 2 1985~2014年(a、d)观测(CN05.1数据)、(b、e)原始多模式集合MME模拟和(c、f)QM 误差订正后的多模式集合MME(QM)模拟的多年平均冬季(第一行)、夏季(第二行)逐日最高气温
Figure 2. Multiyear average daily maximum temperature in winter (first line) and summer (second line) of the observation and simulation during 1985–2014: (a, d) CN05.1 data (observation); (b, e) the multimodel ensemble (MME) result of CMIP6 models; (c, f) MME(QM) is the MME result of CMIP6 models corrected by the QM (quantile mapping) method
图 7 1985~2100年区域平均热浪频次(所有发生热浪区域热浪频次平均值)时间变化特征(7窗口滑动平均)。虚线为多模式集合历史与未来预估的时间分界线(separate)
Figure 7. Time series characteristics of the regional average heatwave frequency from 1985 to 2100 (seven window sliding average). The dotted line (separate) is the time dividing the line between the historical and future estimates of the multimodal set
图 8 (a)SSP1-2.6、(b)SSP2-4.5和(c)SSP5-8.5情景下多模式预估中国区域逐日气温异常序列。以CN05.1自1985~2014年为基准时期,tasmax为逐日最高温,tasmin为逐日最低温
Figure 8. Temperature anomaly of the multimodel ensemble in China under (a) SSP1-2.6, (b) SSP2-4.5, and (c) SSP5-8.5 scenarios (using CN05.1 from 1985 to 2014 as baseline). Tasmax indicates the daily maximum temperature and tasmin corresponds to the daily minimum temperature
表 1 本文所用CMIP6中9个气候模式概况
Table 1. Overview of nine CMIP6 models used in this study
模式名称 水平网格格点数 历史时段 未来时段 机构/国家 ACCESS-ESM1-5 192 $ \times $ 145 1850~2014年 2015~2100年 CSIRO(Commonwealth Scientific and Industrial Research Organisation)/澳大利亚 BCC-CSM2-MR 320 $ \times $160 1850~2014年 2015~2100年 BCC(Beijing Climate Center)/中国 CanESM5 128 $ \times $ 64 1850~2014年 2015~2100年 CCCma(Canadian Centre for Climate Modelling and Analysis)/加
拿大EC-Earth3 512 $ \times $ 256 1850~2014年 2015~2100年 EC-Earth-Consortium/瑞典 INM-CM5-0 180 $ \times $ 120 1850~2014年 2015~2100年 INM(Institute for Numerical Mathematics)/俄罗斯 IPSL-CM6A-LR 144 $ \times $ 143 1850~2014年 2015~2100年 IPSL(Institut Pierre Simon Laplace)/法国 MIROC6 256 $ \times $ 128 1850~2014年 2015~2100年 MIROC/日本 MPI-ESM1-2-HR 384 $ \times $ 192 1850~2014年 2015~2100年 DKRZ(Deutsches Klimarechenzentrum)/德国 NESM3 192 $ \times $ 96 1850~2014年 2015~2100年 NUIST(Nanjing University of Information Science and Technology)/中国 表 2 本文所用热浪指标
Table 2. Criteria for the heatwave used in this study
热浪指标 定义 热浪频次(HWF) 每年热浪事件累计发生次数 热浪日数(HWD) 每年热浪事件的累计日数 最长热浪持续时间(LHWD) 每年持续时间最长热浪过程的日数 -
[1] Beniston M. 2004. The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations [J]. Geophys. Res. Lett., 31(2): L02202. doi: 10.1029/2003GL018857 [2] Boé J, Terray L, Habets F, et al. 2007. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies [J]. Int. J. Climatol., 27(12): 1643−1655. doi: 10.1002/joc.1602 [3] Bumbaco K A, Dello K D, Bond N A. 2013. History of Pacific Northwest heat waves: Synoptic pattern and trends [J]. Journal of Applied Meteorology and Climatology, 52(7): 1618−1631. doi: 10.1175/JAMC-D-12-094.1 [4] Chen R D, Lu R Y. 2015. Comparisons of the circulation anomalies associated with extreme heat in different regions of eastern China [J]. J. Climate, 28(14): 5830−5844. doi: 10.1175/JCLI-D-14-00818.1 [5] Chen J, Brissette F P, Chaumont D, et al. 2013. Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America [J]. Water Resour. Res., 49(7): 4187−4205. doi: 10.1002/wrcr.20331 [6] 陈曦, 李宁, 张正涛, 等. 2020. 全球热浪人口暴露度预估——基于热应力指数 [J]. 气候变化研究进展, 16(4): 424−432. doi: 10.12006/j.issn.1673-1719.2019.253Chen Xin, Li Ning, Zhang Zhengtao, et al. 2020. Estimation of future global population exposure to heatwaves—based on the heat stress index [J]. Climate Change Research (in Chinese), 16(4): 424−432. doi: 10.12006/j.issn.1673-1719.2019.253 [7] Chen Y, Liao Z, Shi Y, et al. 2021. Detectable increases in sequential flood−heatwave events across China during 1961–2018 [J]. Geophys. Res. Lett., 48(6): e2021GL092549. doi: 10.1029/2021GL092549 [8] Déqué M. 2007. Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values [J]. Global and Planetary Change, 57(1-2): 16−26. doi: 10.1016/j.gloplacha.2006.11.030 [9] Ding T, Qian W H. 2011. Geographical patterns and temporal variations of regional dry and wet heatwave events in China during 1960–2008 [J]. Advances in Atmospheric Sciences, 28(2): 322−337. doi: 10.1007/s00376-010-9236-7 [10] 董思言, 熊喆, 延晓冬. 2014. RIEMS2.0模式提高分辨率对中国气温模拟能力的影响 [J]. 气候与环境研究, 19(5): 627−635. doi: 10.3878/j.issn.1006-9585.2013.13088Dong Siyan, Xiong Zhe, Yan Xiaodong. 2014. Influence of increasing RIEMS2. 0 model’s resolution on mean air temperature over China [J]. Climatic and Environmental Research (in Chinese), 19(5): 627−635. doi: 10.3878/j.issn.1006-9585.2013.13088 [11] Gao J H, Sun Y Z, Liu Q Y, et al. 2015. Impact of extreme high temperature on mortality and regional level definition of heat wave: A multi-city study in China [J]. Science of the Total Environment, 505: 535−544. doi: 10.1016/j.scitotenv.2014.10.028 [12] Gershunov A, Cayan D R, Iacobellis S F. 2009. The great 2006 heat wave over California and Nevada: Signal of an increasing trend [J]. J. Climate, 22(23): 6181−6203. doi: 10.1175/2009JCLI2465.1 [13] Gudmundsson L, Bremnes J B, Haugen J E, et al. 2012. Technical note: Downscaling RCM precipitation to the station scale using statistical transformations-a comparison of methods [J]. Hydrology and Earth System Sciences, 16(9): 3383−3390. doi: 10.5194/hess-16-3383-2012 [14] Guo X J, Huang J B, Luo Y, et al. 2017. Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models [J]. Theor. Appl. Climatol., 128(3−4): 507−522. doi: 10.1007/s00704-015-1718-1 [15] 韩振宇, 童尧, 高学杰, 等. 2018. 分位数映射法在RegCM4中国气温模拟订正中的应用 [J]. 气候变化研究进展, 14(4): 331−340. doi: 10.12006/j.issn.1673-1719.2017.156Han Zhenyu, Tong Yao, Gao Xuejie, et al. 2018. Correction based on quantile mapping for temperature simulated by the RegCM4 [J]. Climate Change Research (in Chinese), 14(4): 331−340. doi: 10.12006/j.issn.1673-1719.2017.156 [16] Hartmann D L, Tank K, Rusticucci A M G, et al. 2013. Observations: Atmosphere and surface [M]//Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 159–254. [17] Huang W, Kan H D, Kovats S. 2010. The impact of the 2003 heat wave on mortality in Shanghai, China [J]. Science of the Total Environment, 408(11): 2418−2420. doi: 10.1016/j.scitotenv.2010.02.009 [18] 黄卓, 陈辉, 田华. 2011. 高温热浪指标研究 [J]. 气象, 37(3): 345−351. doi: 10.7519/j.issn.1000-0526.2011.03.013Huang Zhuo, Chen Hui, Tian Hua. 2011. Research on the heat wave index [J]. Meteorological Monthly (in Chinese), 37(3): 345−351. doi: 10.7519/j.issn.1000-0526.2011.03.013 [19] IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. New York: Cambridge University Press. [20] IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V. , P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (Eds. )] [M]. Cambridge: Cambridge University Press. [21] 蒋帅, 江志红, 李伟, 等. 2017. CMIP5模式对中国极端气温及其变化趋势的模拟评估 [J]. 气候变化研究进展, 13(1): 11−24. doi: 10.12006/j.issn.1673-1719.2016.053Jiang Shuai, Jiang Zhihong, Li Wei, et al. 2017. Evaluation of the extreme temperature and its Trend in China simulated by CMIP5 models [J]. Climate Change Research (in Chinese), 13(1): 11−24. doi: 10.12006/j.issn.1673-1719.2016.053 [22] Knowlton K, Rotkin-Ellman M, King G, et al. 2009. The 2006 California heat wave: Impacts on hospitalizations and emergency department visits [J]. Environmental Health Perspectives, 117(1): 61−67. doi: 10.1289/ehp.11594 [23] Li Z S, Guo X L, Yang Y, et al. 2019. Heatwave trends and the population exposure over China in the 21st century as well as under 1.5°C and 2.0°C global warmer future scenarios [J]. Sustainability, 11(12): 3318. doi: 10.3390/su11123318 [24] Li M Y, Yao Y, Luo D H, et al. 2019. The linkage of the large-scale circulation pattern to a long-lived heatwave over mideastern China in 2018 [J]. Atmosphere, 10(2): 89. doi: 10.3390/atmos10020089 [25] 刘娟, 杨沈斌, 王主玉, 等. 2010. 长江中下游水稻生长季极端高温和低温事件的演变趋势 [J]. 安徽农业科学, 38(25):13881–13884, 38(25): 13881−13884. doi: 10.3969/j.issn.0517-6611.2010.25.128Liu Juan, Yang Shenbin, Wang Zhuyu, et al. 2010. Evolution trend of extreme high and low temperature events during rice growing period in the middle and lower reaches of the Yangtze River [J]. Journal of Anhui Agricultural Sciences (in Chinese), 38(25): 13881−13884. doi: 10.3969/j.issn.0517-6611.2010.25.128 [26] Logan T, Bourgault P, Smith T J, et al. 2021. Ouranosinc/xclim: v0.28. 0 [M/OL]. Zenodo. [27] 罗映雪, 徐长春, 楚智, 等. 2020. CN05.1气象数据在流域水文模拟中的应用——以新疆开都河流域为例 [J]. 气候变化研究进展, 16(3): 287−295.Luo Yingxue, Xu Changchun, Chu Zhi, et al. 2020. Application of CN05.1 meteorological data in watershed hydrological simulation: A case study in the upper reaches of Kaidu River basin [J]. Climate Change Research (in Chinese), 16(3): 287−295. [28] McCarthy M, Armstrong L, Armstrong N. 2019. A new heatwave definition for the UK [J]. Weather, 74(11): 382−387. doi: 10.1002/wea.3629 [29] McGregor G R, Bessemoulin P, Ebi K L, et al. 2015. Heatwaves and health: Guidance on warning-system development [M]. Geneva: WHO. [30] 牛彦麟, 杨军, 林华亮, 等. 2021. 高温热浪对北京市居民死亡影响的附加效应 [J/OL]. 中国公共卫生, 1–7. Niu Yanlin, Yang Jun, Lin Hualiang, et al. 2021. Added effect of heat waves on mortality in residents of Beijing, 2007–2013 [J/OL]. Chinese Journal of Public Health (in Chinese), 1–7. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZGGW20210528000&uniplatform=NZKPT&v=RdkqPfseiBnCjZHR7rW5xuwefQsNi2lDAhyd71-PdMwCjLZk5aYsc4yC3YW23EOk. [31] Pawlikowski M, Chorowska A. 2020. Weighted ensemble of statistical models [J]. International Journal of Forecasting, 36(1): 93−97. doi: 10.1016/j.ijforecast.2019.03.019 [32] Piani C, Weedon G P, Best M, et al. 2010. Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models [J]. J. Hydrol., 395(3-4): 199−215. doi: 10.1016/j.jhydrol.2010.10.024 [33] Qiu W T, Yan X D. 2020. The trend of heatwave events in the Northern Hemisphere [J]. Physics and Chemistry of the Earth, Parts A/B/C, 116: 102855. doi: 10.1016/j.pce.2020.102855 [34] Raftery A E, Gneiting T, Balabdaoui F, et al. 2005. Using Bayesian model averaging to calibrate forecast ensembles [J]. Mon. Wea. Rev., 133(5): 1155−1174. doi: 10.1175/MWR2906.1 [35] Reich N G, McGowan C J, Yamana T K, et al. 2019. Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U. S. [J]. PLoS Computational Biology, 15(11): e1007486. doi: 10.1371/journal.pcbi.1007486 [36] Ridder N N, Pitman A J, Ukkola A M. 2021. Do CMIP6 climate models simulate global or regional compound events skillfully? [J]. Geophys. Res. Lett., 48(2): e2020GL091152. doi: 10.1029/2020GL091152 [37] Robine J M, Cheung S L K, Le Roy S, et al. 2008. Death toll exceeded 70, 000 in Europe during the summer of 2003 [J]. Comptes Rendus Biologies, 331(2): 171−178. doi: 10.1016/j.crvi.2007.12.001 [38] Schär C, Vidale P L, Lüthi D, et al. 2004. The role of increasing temperature variability in European summer heatwaves [J]. Nature, 427(6972): 332−336. doi: 10.1038/nature02300 [39] Shen Z X, Zhang Q, Singh V P, et al. 2021. Station-based non-linear regression downscaling approach: A new monthly precipitation downscaling technique [J]. International Journal of Climatology, 41(13): 5879−5898. doi: 10.1002/joc.7158 [40] 石晓丽, 史文娇. 2016. 极端高温对黄淮海平原冬小麦产量的影响 [J]. 生态与农村环境学报, 32(2): 259−269. doi: 10.11934/j.issn.1673-4831.2016.02.014Shi Xiaoli, Shi Wenjiao. 2016. Impacts of extreme high temperature on winter wheat yield in the Huang−Huai−Hai Plain [J]. Journal of Ecology and Rural Environment (in Chinese), 32(2): 259−269. doi: 10.11934/j.issn.1673-4831.2016.02.014 [41] 宋晨阳, 王锋, 张韧, 等. 2016. 气候变化背景下我国城市高温热浪的风险分析与评估 [J]. 灾害学, 31(1): 201−206. doi: 10.3969/j.issn.1000-811X.2016.01.037Song Chenyang, Wang Feng, Zhang Ren, et al. 2016. Risk analysis and assessment of high-temperature and heat-wave disaster in Chinese cities under the background of climate change [J]. Journal of Catastrophology (in Chinese), 31(1): 201−206. doi: 10.3969/j.issn.1000-811X.2016.01.037 [42] Stocker T. 2014. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 162. [43] Sun Y, Zhang X B, Zwiers F W, et al. 2014. Rapid increase in the risk of extreme summer heat in eastern China [J]. Nature Climate Change, 4(12): 1082−1085. doi: 10.1038/nclimate2410 [44] Tebaldi C, Knutti R. 2007. The use of the Multi-model ensemble in probabilistic climate projections [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 365(1857): 2053−2075. doi: 10.1098/rsta.2007.2076 [45] Themeßl M J, Gobiet A, Heinrich G. 2012. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal [J]. Climatic Change, 112(2): 449−468. doi: 10.1007/s10584-011-0224-4 [46] 田芝平, 姜大膀. 2013. 不同分辨率CCSM4对东亚和中国气候模拟能力分析 [J]. 大气科学, 37(1): 171−186. doi: 10.3878/j.issn.1006-9895.2012.12050Tian Zhiping, Jiang Dabang. 2013. Evaluation of the performance of low-to high-resolution CCSM4 over East Asia and China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(1): 171−186. doi: 10.3878/j.issn.1006-9895.2012.12050 [47] 童尧, 高学杰, 韩振宇, 等. 2017. 基于RegCM4模式的中国区域日尺度降水模拟误差订正 [J]. 大气科学, 41(6): 1156−1166. doi: 10.3878/j.issn.1006-9895.1704.16275Tong Yao, Gao Xuejie, Han Zhenyu, et al. 2017. Bias correction of daily precipitation simulated by RegCM4 model over China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(6): 1156−1166. doi: 10.3878/j.issn.1006-9895.1704.16275 [48] 王丽君. 2018. 黄淮海平原夏玉米季干旱、高温的发生特征及对产量的影响 [D]. 中国农业大学博士学位论文. Wang Lijun. 2018. Spatiol–temporal characteristics of drought, heat and its effect on yield for summer maize in Huang−Huai−Hai Plain, China [D]. Ph. D. dissertation (in Chinese), China Agricultural University. [49] Wang L B, Rohli R V, Yan X D, et al. 2017. A new method of multi–model ensemble to improve the simulation of the geographic distribution of the Köppen–Geiger climatic types [J]. International Journal of Climatology, 37(15): 5129−5138. doi: 10.1002/joc.5150 [50] Wang J, Yan Z W, Quan X W, et al. 2017. Urban warming in the 2013 summer heat wave in eastern China [J]. Climate Dyn., 48(9-10): 3015−3033. doi: 10.1007/s00382-016-3248-7 [51] Wibig J. 2017. Heat waves in Poland in the period 1951-2015: Trends, patterns and driving factors [J]. Meteorology Hydrology and Water Management, 6(1): 37−45. doi: 10.26491/mhwm/78420 [52] 吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比 [J]. 地球物理学报, 56(4): 1102−1111. doi: 10.6038/cjg20130406Wu Jia, Gao Xuejie. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese Journal of Geophysics (in Chinese), 56(4): 1102−1111. doi: 10.6038/cjg20130406 [53] Wu J, Gao X J, Giorgi F, et al. 2017. Changes of effective temperature and cold/hot days in late decades over China based on a high resolution gridded observation dataset [J]. International Journal of Climatology, 37(S1): 788−800. doi: 10.1002/joc.5038 [54] Xu Y, Gao X J, Shen Y, et al. 2009. A daily temperature dataset over China and its application in validating a RCM Simulation [J]. Advances in Atmospheric Sciences, 26(4): 763−772. doi: 10.1007/s00376-009-9029-z [55] Ye D X, Yin J F, Chen Z H, et al. 2014. Spatial and temporal variations of heat waves in China from 1961 to 2010 [J]. Advances in Climate Change Research, 5(2): 66−73. doi: 10.3724/SP.J.1248.2014.066 [56] 张嘉仪, 钱诚. 2020. 1960~2018年中国高温热浪的线性趋势分析方法与变化趋势 [J]. 气候与环境研究, 25(3): 225–239. Zhang Jiayi, Qian Cheng. 2020. Linear trends in occurrence of high temperature and heat waves in China for the 1960–2018 period: Method and analysis results [J]. Climatic and Environmental Research (in Chinese), 25(3): 225−239. doi: 10.3878/j.issn.1006-9585.2019.19134 [57] Zhang J, Liu S Q, Han J, et al. 2016. Impact of heat waves on nonaccidental deaths in Jinan, China, and associated risk factors [J]. International Journal of Biometeorology, 60(9): 1367−1375. doi: 10.1007/s00484-015-1130-7 [58] Zhang Y, You Q, Mao G, et al. 2019. Short-term concurrent drought and heatwave frequency with 1.5°C and 2.0°C global warming in humid subtropical basins: A case study in the Gan River basin, China [J]. Climate Dyn., 52(7-8): 4621−4641. doi: 10.1007/s00382-018-4398-6 [59] 周天军, 陈晓龙. 2015. 气候敏感度、气候反馈过程与2°C升温阈值的不确定性问题 [J]. 气象学报, 73(4): 624−634. doi: 10.11676/qxxb2015.057Zhou Tianjun, Chen Xiaolong. 2015. The uncertainty in the 2°C warming threshold issue as related to climate sensitivity and climate feedback [J]. Acta Meteorologica Sinica (in Chinese), 73(4): 624−634. doi: 10.11676/qxxb2015.057 -