高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国家气候中心两个CMIP6模式模拟的东亚夏季风的季节内演变

张潇潇 薛峰 董啸 林壬萍

张潇潇, 薛峰, 董啸, 等. 2022. 国家气候中心两个CMIP6模式模拟的东亚夏季风的季节内演变[J]. 气候与环境研究, 27(6): 729−746 doi: 10.3878/j.issn.1006-9585.2021.21112
引用本文: 张潇潇, 薛峰, 董啸, 等. 2022. 国家气候中心两个CMIP6模式模拟的东亚夏季风的季节内演变[J]. 气候与环境研究, 27(6): 729−746 doi: 10.3878/j.issn.1006-9585.2021.21112
ZHANG Xiaoxiao, XUE Feng, DONG Xiao, et al. 2022. Subseasonal Evolution of the East Asian Summer Monsoon Simulated by Two BCC Climate Models Participating in CMIP6 [J]. Climatic and Environmental Research (in Chinese), 27 (6): 729−746 doi: 10.3878/j.issn.1006-9585.2021.21112
Citation: ZHANG Xiaoxiao, XUE Feng, DONG Xiao, et al. 2022. Subseasonal Evolution of the East Asian Summer Monsoon Simulated by Two BCC Climate Models Participating in CMIP6 [J]. Climatic and Environmental Research (in Chinese), 27 (6): 729−746 doi: 10.3878/j.issn.1006-9585.2021.21112

国家气候中心两个CMIP6模式模拟的东亚夏季风的季节内演变

doi: 10.3878/j.issn.1006-9585.2021.21112
基金项目: 北京市自然科学基金项目8204064,北京市科学技术协会2021~2023年度青年人才托举工程,中国气象局预报员专项CMAYBY2020-004,北京市气象局科技项目BMBKJ202001008,国家自然科学基金项目41706028、41606027
详细信息
    作者简介:

    张潇潇,女,1990年出生,博士,高级工程师,主要从事短期气候预测研究。E-mail: xiaoxiao_admire@163.com

    通讯作者:

    董啸,E-mail: dongxiao@mail.iap.ac.cn

  • 中图分类号: P466

Subseasonal Evolution of the East Asian Summer Monsoon Simulated by Two BCC Climate Models Participating in CMIP6

Funds: Beijing Natural Science Foundation (Grant 8204064), 2021−2023 Youth Talent Support Project of Beijing Association for Science and Technology, Special Program for Forecasters, China Meteorological Administration (Grant CMAYBY2020-004), Science and Technology Project of Beijing Meteorological Bureau (Grant BMBKJ202001008), National Natural Science Foundation of China (Grants 41706028 and 41606027)
  • 摘要: 分析了国家气候中心两个参加第六次国际耦合模式比较计划(CMIP6)的模式BCC-CSM2-MR和BCC-ESM1对东亚夏季风季节内演变的模拟情况,包括气候态特征以及在ENSO(El Niño and Southern Oscillation)循环不同位相下的特征。本文同时对比分析了观测海温海冰驱动大气环流模式试验(AMIP试验)以及耦合模式的历史气候模拟试验(Historical试验)的结果。结果表明,模式能够合理地模拟出东亚夏季风环流和降水的气候态特征。相比大气模式,耦合模式能够明显改善对气候态的模拟,特别是耦合模式能够较好地模拟出副热带高压从6~8月向北以及向东移动的季节内演变特征。对于El Niño衰减年和La Niña年合成来说,大气模式能够在一定程度上模拟出El Niño衰减年(La Niña年)副高偏西(东)、对流减弱(增强)的特征,但是对于位置和强度的模拟存在偏差,特别是对于其季节内尺度的演变。耦合模式相比大气模式来说,并没有改善对于ENSO循环影响东亚夏季风季节内演变的模拟,这可能和耦合模式模拟的ENSO本身的偏差有关。因此要想改善对于东亚夏季风季节内演变及其年际差异的模拟,除了考虑海气相互作用之外,还需要改进模式对于ENSO的模拟效果。
  • 图  1  1979~2014年气候平均的(a)夏季、(b)6月、(c)7月、(d)8月平均降水量(阴影,单位:mm d−1)和850 hPa风场(箭头,单位:m/s)

    Figure  1.  Climatologically averaged (1979–2014) distributions of (a) summer mean, (b) June, (c) July, and (d) August precipitation (shaded, units: mm d−1) and 850-hPa winds (vector, units: m s−1)

    图  2  BCC-CSM2-MR模式模拟的1979~2014年(a、e)夏季、(b、f)6月、(c、g)7月、(d、h)8月平均降水量(阴影,单位:mm d−1)和850 hPa风场(箭头,单位:m/s):(a–d)AMIP试验;(e–h)Historical试验

    Figure  2.  (a, e) Summer, (b, f) June, (c, g) July, and (d, h) August mean precipitation (shaded, units: mm d−1) and 850-hPa winds (vector, units: m s−1) simulated by BCC-CSM2-MR model during 1979–2014: (a–d) AMIP experiment; (e–h) Historical experiment

    图  3  图2,但为BCC-ESM1模式的模拟结果

    Figure  3.  Same as Fig. 2, but simulated by BCC-ESM1 model

    图  4  (a–d)BCC-CSM2-MR模式和(e–h)BCC-ESM1模式模拟的1979~2014年(a、e)夏季、(b、f)6月、(c、g)7月、(d、h)8月平均降水量(阴影,单位:mm d−1)和850 hPa风场(箭头,单位:m/s)的Historical试验与AMIP试验模拟结果之差

    Figure  4.  Differences between the coupled Historical experiment and the uncoupled AMIP experiment of (a, e) summer, (b, f) June, (c, g) July, and (d, h) August mean precipitation (shaded, units: mm d−1) and 850-hPa winds (vector, units: m s−1) during 1979–2014: (a–d) BCC-CSM2-MR model; (e–h) BCC-ESM1 model

    图  5  气候平均的(a)观测、(b、d)BCC-ESM1模式和(c、e)BCC-CSM2-MR模式模拟的副高5880 gpm线夏季平均(黑线)及6月、7月、8月季节内演变(彩线):(b、c)AMIP试验;(d、e)Historical试验

    Figure  5.  Climatological summer mean and monthly locations of western Pacific subtropical high 5880-gpm lines at 500 hPa for (a) observation, (b, c) AMIP experiment, and (d, e) Historical experiment: (b, d) BCC-ESM1 model; (c, e) BCC-CSM2-MR model. The black and colored lines represent the summer (JJA) mean and monthly results, respectively

    图  6  观测的El Niño衰减年合成的(a、b)6月、(c、d)7月和(e、f)8月850 hPa风场异常(箭头,单位:m s−1)、OLR异常(左列填色,单位:W m−2)、降水量异常(右列填色,单位:mm d−1)及副高5880 gpm线(绿线为气候态,黑线为衰减年合成),打点区通过90%置信水平检验

    Figure  6.  Composites of the 850-hPa winds anomalies (vectors, units: m s−1), OLR anomalies (shadings on the left panel, units: W m−2), precipitation anomalies (shadings on the right panel, units: mm d−1) and locations of western Pacific subtropical high 5880-gpm lines at 500 hPa in (a–b) June, (c–d) July, and (e–f) August for the El Niño decaying years in observation. The green and black lines represent climatology results and composites of 5880-gpm lines, respectively. The dots denote areas significant at the 90% confidence level

    图  7  El Niño衰减年合成的BCC-CSM2-MR模式(左列)和BCC-ESM1模式(右列)AMIP试验(a、b)6月、(c、d)7月和(e、f)8月850 hPa风场异常(箭头,单位:m s−1)、OLR异常(填色,单位:W m−2)及副高5880 gpm线(绿线为气候态,黑线为衰减年合成),打点区通过90%置信水平检验

    Figure  7.  Composites of the 850-hPa winds anomalies (vector, units: m s−1), OLR anomalies (shaded, units: W m−2), and locations of western Pacific subtropical high 5880-gpm lines at 500 hPa in (a–b) June, (c–d) July, and (e–f) August simulated by AMIP experiment of BCC-CSM2-MR model (left column) and BCC-ESM1 model (right column) for the El Niño decaying years. The dots denote areas significant at the 90% confidence level

    图  8  1900~2014年(a)BCC-CSM2-MR和(b)BCC-ESM1模式Historical试验的Niño3.4指数时间序列

    Figure  8.  Time series of Niño3.4 index for the Historical experiment of (a) BCC-CSM2-MR model and (b) BCC-ESM1 model during 1900–2014

    图  9  图7,但为Historical试验El Niño衰减年合成结果,填色部分为降水量异常

    Figure  9.  Same as Fig. 7, but for Historical experiments, the shadings indicate precipitation anomalies

    图  10  图6,但为观测的La Niña年合成结果

    Figure  10.  Same as Fig. 6, but for the La Niña years

    图  11  图7,但为La Niña年合成结果

    Figure  11.  Same as Fig. 7, but for the La Niña years

  • [1] Adler R F, Huffman G J, Chang A, et al. 2003. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979−present) [J]. J. Hydrometeor., 4(6): 1147−1167. doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
    [2] Bayr T, Domeisen D I V, Wengel C. 2019. The effect of the equatorial Pacific cold SST bias on simulated ENSO teleconnections to the North Pacific and California [J]. Climate Dyn., 53(7): 3771−3789. doi: 10.1007/s00382-019-04746-9
    [3] 陈卫, 陆日宇. 2016. 2015/2016厄尔尼诺事件的衰减位相及其对应的西北太平洋环流异常 [J]. 大气科学学报, 39(6): 766−777. doi: 10.13878/j.cnki.dqkxxb.20160824001

    Chen Wei, Lu Riyu. 2016. Decaying phase of the 2015/2016 El Niño event and its associated western North Pacific atmospheric circulation anomaly [J]. Transactions of Atmospheric Sciences (in Chinese), 39(6): 766−777. doi: 10.13878/j.cnki.dqkxxb.20160824001
    [4] 陈文. 2002. El Niño和La Niña事件对东亚冬、夏季风循环的影响 [J]. 大气科学, 26(5): 595−610. doi: 10.3878/j.issn.1006-9895.2002.05.02

    Chen Wen. 2002. Impacts of El Niño and La Niña on the cycle of the East Asian winter and summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26(5): 595−610. doi: 10.3878/j.issn.1006-9895.2002.05.02
    [5] Dong X, Fan F X, Lin R P, et al. 2017. Simulation of the western north Pacific subtropical high in El Niño decaying summers by CMIP5 AGCMs [J]. Atmos. Oceanic Sci. Lett., 10(2): 146−155. doi: 10.1080/16742834.2017.1272404
    [6] Dong X, Lin R P. 2021. Climatological increased precipitation from July to August in the western North Pacific region simulated by CMIP6 Models [J]. Atmosphere, 12(6): 664. doi: 10.3390/atmos12060664
    [7] Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization [J]. Geosci. Model Dev., 9(5): 1937−1958. doi: 10.5194/gmd-9-1937-2016
    [8] 符淙斌, 滕星林. 1988. 我国夏季的气候异常与埃尔尼诺/南方涛动现象的关系 [J]. 大气科学, 12(S1): 133−141. doi: 10.3878/j.issn.1006-9895.1988.t1.11

    Fu Congbin, Teng Xinglin. 1988. Climate anomalies in China associated with E1 Niño/Southern Oscillation [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 12(S1): 133−141. doi: 10.3878/j.issn.1006-9895.1988.t1.11
    [9] He C, Zhou T J. 2014. The two interannual variability modes of the western North Pacific subtropical high simulated by 28 CMIP5-AMIP models [J]. Climate Dyn. , 43(9–10): 2455–2469, doi: 10.1007/s00382-014-2068-x
    [10] Huang B Y, Thorne P W, Banzon V F, et al. 2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons [J]. J. Climate, 30(20): 8179−8205. doi: 10.1175/JCLI-D-16-0836.1
    [11] 黄平, 黄荣辉. 2010. El Niño事件对其衰减阶段夏季中国降水季节内演变的影响及其机理 [J]. 大气科学学报, 33(5): 513−519. doi: 10.13878/j.cnki.dqkxxb.2010.05.015

    Huang Ping, Huang Ronghui. 2010. Effects of El Niño events on intraseasonal variations of following summer rainfall in China and its mechanism [J]. Transactions of Atmospheric Sciences (in Chinese), 33(5): 513−519. doi: 10.13878/j.cnki.dqkxxb.2010.05.015
    [12] Jiang W P, Huang G, Hu K M, et al. 2017. Diverse relationship between ENSO and the Northwest Pacific summer climate among CMIP5 Models: Dependence on the ENSO decay pace [J]. J. Climate, 30(1): 109−127. doi: 10.1175/JCLI-D-16-0365.1
    [13] Kanamitsu M, Ebisuzaki W, Woollen J, et al. 2002. NCEP-DOE AMIP-II reanalysis (R-2) [J]. Bull. Amer. Meteor. Soc., 83(11): 1631−1644. doi: 10.1175/bams-83-11-1631
    [14] 李博, 周天军, 吴春强, 等. 2009. 大气环流模式和耦合模式模拟的降水—海温关系之比较 [J]. 大气科学, 33(5): 1071−1086. doi: 10.3878/j.issn.1006-9895.2009.05.17

    Li Bo, Zhou Tianjun, Wu Chunqiang, et al. 2009. Relationship between rainfall and sea surface temperature simulated by LASG/IAP AGCM and CGCM [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(5): 1071−1086. doi: 10.3878/j.issn.1006-9895.2009.05.17
    [15] Liebmann B, Smith C A. 1996. Description of a complete (interpolated) outgoing longwave radiation dataset [J]. Bull. Amer. Meteor. Soc., 77(6): 1275−1277.
    [16] Lin R P, Dong X, Fan F X. 2018. Can coupled models perform better in the simulation of sub-seasonal evolution of the western North Pacific subtropical high than atmospheric models in boreal summer? [J]. Atmos. Sci. Lett., 19(12): e862. doi: 10.1002/asl.862
    [17] Lin R P, Zhu J, Zheng F. 2016. Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols [J]. Sci. Rep., 6: 38546. doi: 10.1038/srep38546
    [18] 刘伯奇, 何金海. 2015. 亚洲夏季风动力学研究综述 [J]. 热带气象学报, 31(6): 869−880. doi: 10.16032/j.issn.1004-4965.2015.06.015

    Liu Boqi, He Jinhai. 2015. Reviews on the dynamics of Asian summer monsoon [J]. Journal of Tropical Meteorology (in Chinese), 31(6): 869−880. doi: 10.16032/j.issn.1004-4965.2015.06.015
    [19] McKenna S, Santoso A, Gupta A S, et al. 2020. Indian ocean dipole in CMIP5 and CMIP6: Characteristics, biases, and links to ENSO [J]. Sci. Rep., 10: 11500. doi: 10.1038/s41598-020-68268-9
    [20] Planton Y Y, Guilyardi E, Wittenberg A T, et al. 2021. Evaluating climate models with the CLIVAR 2020 ENSO metrics package [J]. Bull. Am. Meteor. Soc., 102(2): E193−E217. doi: 10.1175/BAMS-D-19-0337.1
    [21] Popp M, Lutsko N J, Bony S. 2020. Weaker links between zonal convective clustering and ITCZ width in climate models than in observations [J]. Geophys. Res. Lett., 47(22): e2020GL090479. doi: 10.1029/2020GL090479
    [22] Song F F, Zhou T J. 2014. The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air–sea coupling improve the simulations? [J]. J. Climate, 27(23): 8761−8777. doi: 10.1175/JCLI-D-14-00396.1
    [23] Song X L, Zhang G J. 2020. Role of equatorial cold tongue in central pacific double-ITCZ bias in the NCAR CESM1.2 [J]. J. Climate, 33(24): 10407−10418. doi: 10.1175/JCLI-D-20-0141.1
    [24] 苏同华, 薛峰. 2010. 东亚夏季风环流和雨带的季节内变化 [J]. 大气科学, 34(3): 611−628. doi: 10.3878/j.issn.1006-9895.2010.03.13

    Su Tonghua, Xue Feng. 2010. The intraseasonal variation of summer monsoon circulation and rainfall in East Asia [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(3): 611−628. doi: 10.3878/j.issn.1006-9895.2010.03.13
    [25] 唐颢苏, 胡开明, 黄刚. 2019. El Niño衰退年夏季西北太平洋异常反气旋季节内演变特征及其机制 [J]. 气候与环境研究, 24(4): 525−536. doi: 10.3878/j.issn.1006-9585.2019.18156

    Tang Haosu, Hu Kaiming, Huang Gang. 2019. Characteristics and mechanisms of sub-seasonal evolution of Northwest Pacific anomalous anticyclone during the El Niño decaying summer [J]. Climatic and Environmental Research (in Chinese), 24(4): 525−536. doi: 10.3878/j.issn.1006-9585.2019.18156
    [26] Tao S Y, Chen L X. 1987. A review of recent research on the East Asian summer monsoon in China [M]//Chang C P, Krishnamurti T N. Monsoon Meteorology. Oxford: Oxford University Press, 60–92.
    [27] 陶诗言, 张庆云, 张顺利. 1998. 1998年长江流域洪涝灾害的气候背景和大尺度环流条件 [J]. 气候与环境研究, 3(4): 290−299. doi: 10.3878/j.issn.1006-9585.1998.04.01

    Tao Shiyan, Zhang Qingyun, Zhang Shunli. 1998. The great floods in the Changjiang River valley in 1998 [J]. Climatic and Environmental Research (in Chinese), 3(4): 290−299. doi: 10.3878/j.issn.1006-9585.1998.04.01
    [28] Tian B J, Dong X Y. 2020. The double-ITCZ bias in CMIP3, CMIP5, and CMIP6 models based on annual mean precipitation [J]. Geophys. Res. Lett., 47(8): e2020GL087232. doi: 10.1029/2020GL087232
    [29] Trenberth K E. 1997. The definition of El Niño [J]. Bull. Amer. Meteor. Soc., 78(12): 2771−2777. doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2
    [30] 涂长望, 黄士松. 1944. 中国夏季风之进退 [J]. 气象学报, 18(1): 1−20.

    Tu Changwang, Huang Shisong. 1944. The advance and retreat of the summer monsoon in China [J]. Acta Meteorologica Sinica (in Chinese), 18(1): 1−20.
    [31] Wang B, Ding Q H, Fu X H, et al. 2005. Fundamental challenge in simulation and prediction of summer monsoon rainfall [J]. Geophys. Res. Lett., 32(15): L15711. doi: 10.1029/2005GL022734
    [32] Wu T W, Lu Y X, Fang Y J, et al. 2019. The Beijing climate center climate system model (BCC-CSM): The main progress from CMIP5 to CMIP6 [J]. Geosci. Model Dev., 12(4): 1573−1600. doi: 10.5194/gmd-12-1573-2019
    [33] Wu T W, Zhang F, Zhang J, et al. 2020. Beijing climate center earth system model version 1 (BCC-ESM1): Model description and evaluation of aerosol simulations [J]. Geosci. Model Dev., 13(3): 977−1005. doi: 10.5194/gmd-13-977-2020
    [34] Xie S P, Hu K M, Hafner J, et al. 2009. Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño [J]. J. Climate, 22(3): 730−747. doi: 10.1175/2008JCLI2544.1
    [35] 辛晓歌, 吴统文, 张洁, 等. 2019. BCC模式及其开展的CMIP6试验介绍 [J]. 气候变化研究进展, 15(5): 533−539. doi: 10.12006/j.issn.1673-1719.2019.039

    Xin Xiaoge, Wu Tongwen, Zhang Jie, et al. 2019. Introduction of BCC models and its participation in CMIP6 [J]. Climate Change Research (in Chinese), 15(5): 533−539. doi: 10.12006/j.issn.1673-1719.2019.039
    [36] Xin X G, Wu T W, Zhang J, et al. 2020. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon [J]. Int. J. Climatol., 40(15): 6423−6440. doi: 10.1002/joc.6590
    [37] Xue F, Dong X, Fan F X. 2018. Anomalous western Pacific subtropical high during El Niño developing summer in comparison with decaying summer [J]. Adv. Atmos. Sci., 35(3): 360−367. doi: 10.1007/s00376-017-7046-x
    [38] Xue F, Fan F X. 2019. Role of local air−sea interaction in a significant correlation of convective activity in the western Pacific warm pool between June and August [J]. J. Meteor. Soc. Japan Ser. II, 97(5): 995−1008. doi: 10.2151/jmsj.2019-054
    [39] 薛峰, 范方兴, 苏同华. 2020. 西太平洋暖池对流三类显著月际变化及其成因 [J]. 气候与环境研究, 25(2): 113−124. doi: 10.3878/j.issn.1006-9585.2019.19139

    Xue Feng, Fan Fangxing, Su Tonghua. 2020. Three categories of significant inter-monthly variations of the warm pool convection in the western Pacific and the related physical mechanism [J]. Climatic and Environmental Research (in Chinese), 25(2): 113−124. doi: 10.3878/j.issn.1006-9585.2019.19139
    [40] 薛峰, 苏同华. 2018. ENSO循环背景下东亚夏季风的季节内变化[M]. 北京: 气象出版社, 105pp

    Xue Feng, Su Tonghua. 2018. Intraseasonal Variation of the East Asian Summer Monsoon Regulated by the ENSO Cycle (in Chinese) [M]. Beijing: China Meteorological Press, 105pp.
    [41] Xue F, Zhao J J. 2017. Intraseasonal variation of the East Asian summer monsoon in La Niña years [J]. Atmos. Oceanic Sci. Lett., 10(2): 156−161. doi: 10.1080/16742834.2016.1254008
    [42] Yang S, Li Z N, Yu J Y, et al. 2018. El Niño–Southern Oscillation and its impact in the changing climate [J]. Natl. Sci. Rev., 5(6): 840−857. doi: 10.1093/nsr/nwy046
    [43] Zhang G J, Song X L, Wang Y. 2019. The double ITCZ syndrome in GCMs: A coupled feedback problem among convection, clouds, atmospheric and ocean circulations [J]. Atmos. Res., 229: 255−268. doi: 10.1016/j.atmosres.2019.06.023
    [44] Zhang J, Wu T W, Zhang F, et al. 2021. BCC-ESM1 model datasets for the CMIP6 aerosol chemistry model intercomparison project (AerChemMIP) [J]. Adv. Atmos. Sci., 38(2): 317−328. doi: 10.1007/s00376-020-0151-2
    [45] Zhang X X, Liu H L, Zhang M H. 2015. Double ITCZ in coupled ocean−atmosphere models: From CMIP3 to CMIP5 [J]. Geophys. Res. Lett., 42(20): 8651−8659. doi: 10.1002/2015GL065973
    [46] 赵俊杰, 薛峰, 林万涛, 等. 2016. El Niño对东亚夏季风和夏季降水季节内变化的影响 [J]. 气候与环境研究, 21(6): 678−686. doi: 10.3878/j.issn.1006-9585.2016.15244

    Zhao Junjie, Xue Feng, Lin Wantao, et al. 2016. The El Niño influence on intraseasonal variations of East Asian summer monsoon and summer rainfall [J]. Climatic and Environmental Research (in Chinese), 21(6): 678−686. doi: 10.3878/j.issn.1006-9585.2016.15244
    [47] 周天军, 邹立维, 陈晓龙. 2019. 第六次国际耦合模式比较计划(CMIP6)评述 [J]. 气候变化研究进展, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193

    Zhou Tianjun, Zou Liwei, Chen Xiaolong. 2019. Commentary on the coupled model intercomparison project phase 6 (CMIP6) [J]. Climate Change Research (in Chinese), 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193
    [48] Zou L W, Zhou T J. 2013. Can a regional ocean−atmosphere coupled model improve the simulation of the interannual variability of the western North Pacific summer monsoon? [J]. J. Climate, 26(7): 2353−2367. doi: 10.1175/JCLI-D-11-00722.1
    [49] 竺可桢. 1934. 东南季风与中国之雨量 [J]. 地理学报, 1(1): 1−27. doi: 10.11821/xb193401001

    Chu C. 1934. The enigma of Southeast Monsoon in China [J]. Acta Geographica Sinica, 1(1): 1−27. doi: 10.11821/xb193401001
  • 加载中
图(11)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  23
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 网络出版日期:  2021-10-31
  • 刊出日期:  2022-12-12

目录

    /

    返回文章
    返回