Projected Changes of Extreme Precipitation in Rural Revitalization Areas in China under 1.5°C and 2.0°C Global Warming Scenarios
-
摘要: 中国乡村振兴核心区生态环境较脆弱,暴雨洪涝等气象灾害频发,在此背景下,定量、科学地评估乡村振兴核心区全球升温情景下极端降水的变化特征,能够为乡村振兴核心区防止因灾返贫策略等的制定提供一定的科学依据。本研究基于CMIP6(Coupled Model Intercomparison Project Phase 6)气候模式下不同SSPs-RCPs(Shared Socioeconomic Pathways-Representative Concentration Pathways)组合情景模拟数据,对全球升温1.5°C和2.0°C情景下中国乡村振兴核心区极端降水事件频次、强度和持续时间的变化特征进行了分析。结果表明:(1)相对于基准期(1995~2014年),全球升温1.5°C情景下,乡村振兴核心区受极端降水影响明显增大,面积占比60.91%的区域极端降水频次增加,面积占比88.19%的区域极端降水强度增强,面积占比81.07%的区域极端降水持续时间增加;(2)全球升温2.0°C情景下,乡村振兴核心区三项极端降水指标变化与升温1.5°C情景下相似,相对于基准期有增加趋势,极端降水频次、强度和持续时间面积占比分别为55.78%、85.24%、79.33%;(3)从空间角度分析,全球升温1.5°C和2.0°C情景下,乡村振兴核心区中西部相较东部可能更易受极端降水的影响,西藏片区频次和持续时间增加显著,尤其值得关注;(4)当全球升温从1.5°C到2.0°C情景,乡村振兴核心区整体极端降水特征的变化未表现出明显增减趋势及空间特征。相比1.5°C较基准期的变化,2.0°C情景下极端降水频次、强度、持续时间的增加区域范围均缩小,但平均增幅均变大,对于发生极端降水事件的乡村振兴核心区区域而言可能面临更大的风险。
-
关键词:
- 全球升温1.5°C和2.0°C /
- 乡村振兴核心区 /
- 极端降水 /
- CMIP6气候模式
Abstract: The ecological environments of rural revitalization areas in China are relatively fragile. Additionally, meteorological disasters, e.g., heavy rains and floods, occur frequently in these areas. Thus, a quantitative and scientific evaluation of characteristic changes of precipitation extremes in rural revitalization areas at different global warming levels can provide a scientific basis for the formulation of strategies to prevent these areas from returning to poverty due to meteorological disasters. Here, we investigated changes in characteristics of precipitation extremes, i.e., frequency, intensity, and duration, under 1.5°C and 2.0°C global warming scenarios, across rural revitalization areas in China. We used fourteen global climate models under four different emission scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) from the latest Sixth phase Coupled Model Intercomparison Project for analysis. Run-theory was also used to analyze the characteristics of extreme precipitation events. Under 1.5°C warming scenario, the frequency, intensity, and duration of the precipitation extremes were predicted to increase 60.91%, 88.19%, and 81.07% over the entire region, respectively, relative to a reference period (1995–2014). Under 2°C warming scenario, changes in precipitation extreme characteristics were predicted to increase 55.78%, 85.24%, and 79.33% over the entire region, respectively. The central and western regions of the rural revitalization areas were expected to be more susceptible to precipitation extremes compared with the eastern parts for both 1.5°C and 2.0°C warming levels. These changes in frequency and duration were predominant in the Tibet region, which is of great concern. The additional 0.5°C of warming (from 1.5°C to 2.0°C) will lead to fewer areas affected by precipitation extremes for the studied areas. However, these extreme events will be more severe and have longer durations in the affected regions. These findings necessitate the initiation of urgent mitigation and adaptation measures to combat precipitation-related extreme events across rural revitalization areas in China. -
图 4 中国乡村振兴核心区年均极端降水频次变化特征的空间分布:(a)基准期;(b)全球升温1.5°C较基准期;(c)全球升温2.0°C较基准期;(d)全球升温2.0°C较1.5°C
Figure 4. Projected changes in annual extreme precipitation frequency in rural revitalization areas in China during (a) the reference period, (b) a global warming of 1.5°C relative to the reference, (c) a global warming of 2.0°C relative to the reference, and (d) global warming from 1.5°C to 2°C
图 6 中国乡村振兴核心区极端降水强度变化特征的空间分布:(a)基准期;(b)全球升温1.5°C较基准期;(c)全球升温2.0°C较基准期;(d)全球升温2.0°C较1.5°C
Figure 6. Projected changes of extreme precipitation intensity in rural revitalization areas in China during (a) the reference period, (b) a global warming of 1.5°C relative to the reference, (c) a global warming of 2.0°C relative to the reference, and (d) global warming from 1.5°C to 2°C
图 8 中国乡村振兴核心区极端降水持续时间(单位:d)变化特征的空间分布:(a)基准期;(b)全球升温1.5°C较基准期;(c)全球升温2.0°C较基准期;(d)全球升温2.0°C较1.5°C
Figure 8. Projected changes of extreme precipitation duration (units: d) in rural revitalization areas in China during (a) the reference period, (b) a global warming of 1.5°C relative to the reference, (c) a global warming of 2.0°C relative to the reference, and (d) global warming from 1.5°C to 2°C
表 1 本研究所采用的CMIP6气候模式简介
Table 1. Introduction of the CMIP6 climate models used in the study
模式名称 模式所属机构 模式分辨率(经
度×纬度)降尺度和偏差订正
后模式分辨率(经
度×纬度)ACCESS-ESM1-5 澳大利亚联邦科学与工业研究组织 1.875°×1.25° 0.5°×0.5° ACCESS-CM2 澳大利亚联邦科学与工业研究组织,澳大利亚研究委员会气候系统科学卓越中心 1.875°×1.25° 0.5°×0.5° CNRM-ESM2-1 法国国家气象研究中心,欧洲计算研究与高级培训中心 1.4°×1.4063° 0.5°×0.5° CNRM-CM6-1 法国国家气象研究中心,欧洲计算研究与高级培训中心 1.4°×1.4063° 0.5°×0.5° CanESM5 加拿大气候模拟与分析中心 2.8125°×2.8125° 0.5°×0.5° EC-Earth3 欧洲中期天气预报中心 0.7031°×0.7031° 0.5°×0.5° INM-CM5-0 俄罗斯科学院数值数学研究所 2°×1.5° 0.5°×0.5° INM-CM4-8 俄罗斯科学院数值数学研究所 2°×1.5° 0.5°×0.5° IPSL-CM6A-LR 皮埃尔·西蒙·拉普拉斯研究所 2.5°×1.2587° 0.5°×0.5° MRI-ESM2-0 日本气象研究所 1.125°×1.125° 0.5°×0.5° MPI-ESM1-2-LR 德国马克斯·普朗克气象研究所,阿尔弗雷德·韦格纳研究所 1.875°×1.875° 0.5°×0.5° MPI-ESM1-2-HR 德国马克斯·普朗克气象研究所,德国气象局 0.9375°×0.9375° 0.5°×0.5° MIROC-ES2L 日本海洋地球科学与技术局 2.8125°×2.8125° 0.5°×0.5° MIROC6 日本海洋地球科学与技术局 1.4063°×1.3953° 0.5°×0.5° 表 2 各气候模式不同情景下全球升温1.5°C和2.0°C时间段
Table 2. Periods for 1.5°C and 2.0°C global warming in different climate models
模式名称 情景 升温1.5°C时间段 升温2.0°C时间段 模式名称 情景 升温1.5°C时间段 升温2.0°C时间段 ACCESS-ESM1-5 SSP1-2.6 2021~2040年 2064~2083年 INM-CM4-8 SSP1-2.6 2041~2060年 SSP2-4.5 2020~2039年 2036~2055年 SSP2-4.5 2026~2045年 2054~2073年 SSP3-7.0 2024~2043年 2039~2058年 SSP3-7.0 2026~2045年 2043~2062年 SSP5-8.5 2018~2037年 2030~2049年 SSP5-8.5 2021~2040年 2037~2056年 ACCESS-CM2 SSP1-2.6 2018~2037年 2033~2052年 IPSL-CM6A-LR His+SSP1-2.6 2010~2029年 2029~2048年 SSP2-4.5 2019~2038年 2031~2050年 His+SSP2-4.5 2009~2028年 2024~2043年 SSP3-7.0 2018~2037年 2030~2049年 His+SSP3-7.0 2010~2029年 2025~2044年 SSP5-8.5 2016~2035年 2029~2048年 His+SSP5-8.5 2009~2028年 2025~2044年 CNRM-ESM2-1 SSP1-2.6 2038~2057年 MRI-ESM2-0 SSP1-2.6 2020~2039年 SSP2-4.5 2028~2047年 2046~2065年 SSP2-4.5 2021~2040年 2040~2059年 SSP3-7.0 2027~2046年 2043~2062年 SSP3-7.0 2022~2041年 2036~2055年 SSP5-8.5 2023~2042年 2036~2055年 SSP5-8.5 2017~2036年 2029~2048年 CNRM-CM6-1 SSP1-2.6 2018~2037年 2050~2069年 MPI-ESM1-2-LR SSP1-2.6 2033~2052年 SSP2-4.5 2021~2040年 2039~2058年 SSP2-4.5 2027~2046年 2048~2067年 SSP3-7.0 2023~2042年 2036~2055年 SSP3-7.0 2026~2045年 2042~2061年 SSP5-8.5 2019~2038年 2031~2050年 SSP5-8.5 2025~2044年 2039~2058年 CanESM5 His+SSP1-2.6 2004~2023年 2017~2036年 MPI-ESM1-2-HR SSP1-2.6 2032~2051年 His+SSP2-4.5 2004~2023年 2015~2034年 SSP2-4.5 2028~2047年 2054~2073年 His+SSP3-7.0 2004~2023年 2014~2033年 SSP3-7.0 2025~2044年 2041~2060年 His+SSP5-8.5 2003~2022年 2013~2032年 SSP5-8.5 2024~2043年 2040~2059年 EC-Earth3 His+SSP1-2.6 2013~2032年 2034~2053年 MIROC-ES2L SSP1-2.6 2032~2051年 His+SSP2-4.5 2013~2032年 2035~2054年 SSP2-4.5 2032~2051年 2054~2073年 His+SSP3-7.0 2013~2032年 2029~2048年 SSP3-7.0 2030~2049年 2046~2065年 SSP5-8.5 2015~2034年 2026~2045年 SSP5-8.5 2025~2044年 2038~2057年 INM-CM5-0 SSP1-2.6 2027~2046年 MIROC6 SSP1-2.6 2054~2073年 SSP2-4.5 2028~2047年 2063~2082年 SSP2-4.5 2037~2056年 2064~2083年 SSP3-7.0 2023~2042年 2041~2060年 SSP3-7.0 2034~2053年 2050~2069年 SSP5-8.5 2021~2040年 2037~2056年 SSP5-8.5 2031~2050年 2044~2063年 注:His表示该模式情景模拟下在2015年之前(历史时期)升温至1.5°C;升温2.0°C时间段空白部分表示该模式情景模拟下不会升温至2.0°C。 -
[1] Agel L, Barlow M. 2020. How well do CMIP6 historical runs match observed northeast U. S. precipitation and extreme precipitation-related circulation? [J]. J. Climate, 33(22): 9835−9848. doi: 10.1175/JCLI-D-19-1025.1 [2] Ahmadiani M, Ferreira S. 2021. Well-being effects of extreme weather events in the United States [J]. Resource and Energy Economics, 64: 101213. doi: 10.1016/J.RESENEECO.2020.101213 [3] Changnon S A, Pielke R A Jr, Changnon D, et al. 2000. Human factors explain the increased losses from weather and climate extremes [J]. Bull. Amer. Meteor. Soc., 81(3): 437−442. doi:10.1175/1520-0477(2000)081<0437:HFETIL>2.3.CO;2 [4] Chen C A, Hsu H H, Liang H C. 2021. Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the western North Pacific and East Asia [J]. Weather and Climate Extremes, 31: 100303. doi: 10.1016/j.wace.2021.100303 [5] Collins M, Knutti R, Arblaster J, et al. 2013. Long-term climate change: Projections, commitments and irreversibility [M]//Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T F, Qin D, Plattner G K, et al, Eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. [6] 邓婷, 王润, 姜彤, 等. 2017. 利用高分辨率气候模式对湖北未来气候变化的模拟与预估 [J]. 长江流域资源与环境, 26(6): 937−944. doi: 10.11870/cjlyzyyhj201706016Deng Ting, Wang Run, Jiang Tong, et al. 2017. Simulation and projection of future climate change in Hubei Province using high-resolution regional climate model [J]. Resources and Environment in the Yangtze Basin (in Chinese), 26(6): 937−944. doi: 10.11870/cjlyzyyhj201706016 [7] 丁一汇, 王会军. 2016. 近百年中国气候变化科学问题的新认识 [J]. 科学通报, 61(10): 1029−1041. doi: 10.1360/N972015-00638Ding Yihui, Wang Huijun. 2016. Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China [J]. Chinese Science Bulletin (in Chinese), 61(10): 1029−1041. doi: 10.1360/N972015-00638 [8] Dong T Y, Dong W J. 2021. Evaluation of extreme precipitation over Asia in CMIP6 models [J]. Climate Dyn., 57(7): 1751−1769. doi: 10.1007/s00382-021-05773-1 [9] Dosio A, Mentaschi L, Fischer E M, et al. 2018. Extreme heat waves under 1.5°C and 2°C global warming [J]. Environmental Research Letters, 13(5): 054006. doi: 10.1088/1748-9326/aab827 [10] Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization [J]. Geoscientific Model Development, 9(5): 1937−1958. doi: 10.5194/gmd-9-1937-2016 [11] Fay M, Hallegatte S, Bangalore M, et al. 2016. Shock Waves: Managing the Impacts of Climate Change on Poverty [M]. Washington, DC, USA: The World Bank. [12] 傅湘, 纪昌明. 2000. 洪灾损失评估指标的研究 [J]. 水科学进展, 11(4): 432−435. doi: 10.3321/j.issn:1001-6791.2000.04.014Fu Xiang, Ji Changming. 2000. Study on estimating index of flood damage [J]. Advances in Water Science, 11(4): 432−435. doi: 10.3321/j.issn:1001-6791.2000.04.014 [13] Goswami B N, Venugopal V, Sengupta D, et al. 2006. Increasing trend of extreme rain events over India in a warming environment [J]. Science, 314(5804): 1442−1445. doi: 10.1126/science.1132027 [14] 国家统计局. 2019. 中国农村贫困监测报告 [M]. 北京: 中国统计出版社. National Bureau of Statistics. 2019. Poverty Monitoring Report of Rural China (in Chinese) [M]. Beijing: China Statistics Press. [15] Huang J B, Zhang X D, Zhang Q Y, et al. 2017. Recently amplified arctic warming has contributed to a continual global warming trend [J]. Nature Climate Change, 7(12): 875−879. doi: 10.1038/s41558-017-0009-5 [16] IPCC. 2013. Climate change 2013: The physical science basis [M]//Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T F, Qin D, Plattner G K, et al, Eds. Cambridge, UK, New York, USA: Cambridge University Press. [17] 姜彤, 吕嫣冉, 黄金龙, 等. 2020. CMIP6模式新情景(SSP-RCP)概述及其在淮河流域的应用 [J]. 气象科技进展, 10(5): 102−109. doi: 10.3969/j.issn.2095-1973.2020.05.016Jiang Tong, Lü Yanran, Huang Jinlong, et al. 2020. New scenarios of CMIP6 model (SSP-RCP) and its application in the Huaihe River basin [J]. Advances in Meteorological Science and Technology (in Chinese), 10(5): 102−109. doi: 10.3969/j.issn.2095-1973.2020.05.016 [18] 金鑫. 2015. 当代中国应对自然灾害导致返贫的对策研究 [D]. 吉林大学博士学位论文. Jin Xin. 2015. Research on the countermeasures against the poverty-returning caused by natural disaster in contemporary China [D]. Ph. D. dissertation (in Chinese), Jilin University. [19] 景丞, 姜彤, 王艳君, 等. 2016. 中国区域性极端降水事件及人口经济暴露度研究 [J]. 气象学报, 74(4): 572−582. doi: 10.11676/qxxb2016.037Jing Cheng, Jiang Tong, Wang Yanjun, et al. 2016. A study on regional extreme precipitation events and the exposure of population and economy in China [J]. Acta Meteorologica Sinica, 74(4): 572−582. doi: 10.11676/qxxb2016.037 [20] 景丞. 2017. 中国连片特困区干旱灾害影响评估 [D]. 南京信息工程大学硕士学位论文. Jing Cheng. 2017. Assessment of the drought effect in contiguous extreme poverty areas of China [D]. M. S. thesis (in Chinese), Nanjing University of Information Science and Technology. [21] 孔锋, 史培军, 方建, 等. 2017. 全球变化背景下极端降水时空格局变化及其影响因素研究进展和展望 [J]. 灾害学, 32(2): 165−174. doi: 10.3969/j.issn.1000-811X.2017.02.029Kong Feng, Shi Peijun, Fang Jian, et al. 2017. Advances and prospects of spatiotemporal pattern variation of extreme precipitation and its affecting factors under the background of global climate change [J]. Journal of Catastrophology (in Chinese), 32(2): 165−174. doi: 10.3969/j.issn.1000-811X.2017.02.029 [22] Kundzewicz Z W, Su B D, Wang Y J, et al. 2019. Flood risk and its reduction in China [J]. Advances in Water Resources, 130: 37−45. doi: 10.1016/j.advwatres.2019.05.020 [23] 李翠金. 1996. 中国暴雨洪涝灾害的统计分析 [J]. 灾害学, 11(1): 59−63.Li Cuijin. 1996. A statistical analysis of the storm flood disasters in China [J]. Journal of Catastrophology (in Chinese), 11(1): 59−63. [24] 李柔珂, 李耀辉, 徐影. 2018. 未来中国地区的暴雨洪涝灾害风险预估 [J]. 干旱气象, 36(3): 341−352. doi: 10.11755/j.issn.1006-7639(2018)-03-0341Li Rouke, Li Yaohui, Xu Ying. 2018. Projection of rainstorm and flooding disaster risk in China in the 21st century [J]. Journal of Arid Meteorology (in Chinese), 36(3): 341−352. doi: 10.11755/j.issn.1006-7639(2018)-03-0341 [25] 廖永丰, 赵飞, 王志强, 等. 2013. 2000~2011年中国自然灾害灾情空间分布格局分析 [J]. 灾害学, 28(4): 55−60. doi: 10.3969/j.issn.1000-811X.2013.04.011Liao Yongfeng, Zhao Fei, Wang Zhiqiang, et al. 2013. Spatial pattern analysis of natural disasters in China from 2000 to 2011 [J]. Journal of Catastrophology (in Chinese), 28(4): 55−60. doi: 10.3969/j.issn.1000-811X.2013.04.011 [26] 卢珊, 胡泽勇, 王百朋, 等. 2020. 近56年中国极端降水事件的时空变化格局 [J]. 高原气象, 39(4): 683−693. doi: 10.7522/j.issn.1000-0534.2019.00058Lu Shan, Hu Zeyong, Wang Baipeng, et al. 2020. Spatio−temporal patterns of extreme precipitation events over China in recent 56 years [J]. Plateau Meteorology (in Chinese), 39(4): 683−693. doi: 10.7522/j.issn.1000-0534.2019.00058 [27] 罗映雪, 徐长春, 楚智, 等. 2020. CN05.1气象数据在流域水文模拟中的应用——以新疆开都河流域为例 [J]. 气候变化研究进展, 16(3): 287−295. doi: 10.12006/j.issn.1673-1719.2019.178Luo Yingxue, Xu Changchun, Chu Zhi, et al. 2020. Application of CN05.1 meteorological data in watershed hydrological simulation: A case study in the upper reaches of Kaidu River basin [J]. Climate Change Research (in Chinese), 16(3): 287−295. doi: 10.12006/j.issn.1673-1719.2019.178 [28] McKenna S, Santoso A, Gupta A S, et al. 2020. Indian Ocean Dipole in CMIP5 and CMIP6: Characteristics, biases, and links to ENSO [J]. Scientific Reports, 10(1): 11500. doi: 10.1038/s41598-020-68268-9 [29] Nie S P, Fu S W, Cao W H, et al. 2020. Comparison of monthly air and land surface temperature extremes simulated using CMIP5 and CMIP6 versions of the Beijing Climate Center climate model [J]. Theor. Appl. Climatol., 140(1): 487−502. doi: 10.1007/s00704-020-03090-x [30] Pachauri K, Meyer A. 2014. Climate change 2014: Synthesis report [J]. Environmental Policy Collection, 27(2): 408. [31] Su B D, Huang J L, Gemmer M, et al. 2016. Statistical downscaling of CMIP5 multi-model ensemble for projected changes of climate in the Indus River Basin [J]. Atmospheric Research, 178–179: 138–149. doi: 10.1016/j.atmosres.2016.03.023 [32] Su B D, Huang J L, Fischer T, et al. 2018. Drought losses in China might double between the 1.5°C and 2.0°C warming [J]. Proceedings of the National Academy of Sciences of the United States of America, 115(42): 10600−10605. doi: 10.1073/pnas.1802129115 [33] Wang H M, Chen J, Xu C Y, et al. 2020. A framework to quantify the uncertainty contribution of GCMs over multiple sources in hydrological impacts of climate change [J]. Earth’s Future, 8: e2020EF001602. doi: 10.1029/2020EF001602 [34] 王苗, 郭品文, 邬昀, 等. 2012. 我国极端降水事件研究进展 [J]. 气象科技, 40(1): 79−86. doi: 10.3969/j.issn.1671-6345.2012.01.016Wang Miao, Guo Pinwen, Wu Yun, et al. 2012. Progresses in researches on extreme precipitation over China [J]. Meteorological Science and Technology (in Chinese), 40(1): 79−86. doi: 10.3969/j.issn.1671-6345.2012.01.016 [35] 王伟奇. 2009. 中国泥石流现状及浅析 [J]. 科技信息, 29: 205, 353.Wang Weiqi. 2009. Disaster situation and analysis of debris flow in China [J]. Science and Technology Information (in Chinese), 29: 205, 353. [36] 王艳君, 刘俸霞, 翟建青, 等. 2019. 全球升温1.5°C与2.0°C目标下长江流域极端降水的变化特征 [J]. 气象科学, 39(4): 540−547. doi: 10.3969/2018jms.0071Wang Yanjun, Liu Fengxia, Zhai Jianqing, et al. 2019. Variation characteristics of extreme precipitation in the Yangtze River basin under the global warming 1.5°C and 2.0°C [J]. Journal of the Meteorological Sciences (in Chinese), 39(4): 540−547. doi: 10.3969/2018jms.0071 [37] 吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比 [J]. 地球物理学报, 56(4): 1102−1111. doi: 10.6038/cjg20130406Wu Jia, Gao Xuejie. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese Journal of Geophysics (in Chinese), 56(4): 1102−1111. doi: 10.6038/cjg20130406 [38] 尹占娥. 2009. 城市自然灾害风险评估与实证研究 [D]. 华东师范大学博士学位论文. Yin Zhane. 2009. Research of urban natural disaster risk assessment and case study [D]. Ph. D. dissertation (in Chinese), East China Normal University. [39] 曾庆存, 张学洪, 袁重光. 1989. 气候模式的概念、方法和现状 [J]. 地球科学进展, 4(3): 1−26.Zeng Cunqing, Zhang Xuehong, Yuan Chongguang. 1989. The concept of climate models, methods, and the status quo [J]. Advance in Earth Sciences (in Chinese), 4(3): 1−26. [40] 翟盘茂, 潘晓华. 2003. 中国北方近50年温度和降水极端事件变化 [J]. 地理学报, 58(Suppl): 1−10. doi: 10.11821/xb20037s001Zhai Panmao, Pan Xiaohua. 2003. Change in extreme temperature and precipitation over Northern China during the second half of the 20th century [J]. Acta Geographica Sinica (in Chinese), 58(Suppl): 1−10. doi: 10.11821/xb20037s001 [41] 赵习枝. 2019. 基于多源数据的贫困度与自然灾害相关性评估 [D]. 华东师范大学博士学位论文. Zhao Xizhi. 2019. The assessment of the correlation between poverty and natural disasters based on multi-source data [D]. Ph. D. dissertation (in Chinese), East China Normal University. [42] 中华人民共和国水利部. 1999. 中国′98大洪水 [J]. 中国水利, (5): 11−16.Ministry of Water Resources of the People’s Republic of China. 1999. The catastrophic flood in China in 1998 [J]. China Water Resources (in Chinese), (5): 11−16. [43] 周洪建, 王曦, 袁艺, 等. 2014. 半干旱区极端强降雨灾害链损失快速评估方法——以甘肃岷县“5·10”特大山洪泥石流灾害为例 [J]. 干旱区研究, 31(3): 440−445.Zhou Hongjian, Wang Xi, Yuan Yi, et al. 2014. Rapid-assessing methods of loss in extremely heavy rainfall disaster chain in semiarid region—A case study on a flash flood debris flow in Minxian county, Gansu Province [J]. Arid Zone Research (in Chinese), 31(3): 440−445. [44] 周天军, 邹立维, 陈晓龙. 2019. 第六次国际耦合模式比较计划(CMIP6)评述 [J]. 气候变化研究进展, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193Zhou Tianjun, Zou Liwei, Chen Xiaolong. 2019. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6) [J]. Climate Change Research (in Chinese), 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193 -