Projection of Population in Rural Revitalization Areas of China under Climate Change Scenario and Its Application in Drought Disaster Impact Assessment
-
摘要: 根据IPCC提出的共享社会经济路径(SSPs),本文以中国14个乡村振兴核心区为研究区,结合中国当前人口特征设定不同SSPs路径下本地化人口预估参数,采用人口—发展—环境(PDE)模型,预估2020~2040年人口变化特征。结合SSPs-RCPs情景下多模式的干旱评估结果,探讨未来乡村振兴核心区干旱暴露人口较基准期(1995~2014年)的变化特征。结果表明:(1)SSP1、SSP4和SSP5路径下中国乡村振兴核心区未来人口呈下降趋势,SSP2路径下人口保持稳定,SSP3路径下人口持续增长,各路径下2040年达到2.30×109~2.66×109人,且占全国比重16.7%~18.1%。(2)年龄结构上,SSP1、SSP4和SSP5路径下2040年的老龄人口比重大,新生人数极少,可能存在老龄化问题;SSP2路径下年龄结构相对均衡;SSP3路径下,新生人口数量较高,劳动人口相对较多。(3)2020~2040年,除SSP3-7.0情景外,其他情景下年平均干旱灾害频次和年平均干旱灾害暴露人口较基准期均呈增加趋势。各SSPs-RCPs情景下干旱灾害暴露人口变化的空间格局较一致,超过60%的区域较基准期呈增加趋势,其中西南及中部地区增加幅度最高,大别山片区等局部区域暴露度略有降低。(4)不同年龄段受干旱灾害影响程度不一,SSP3-7.0情景下少儿人口暴露于干旱灾害较多,老年人口则在SSP5-8.5情景下受影响程度更大。
-
关键词:
- 共享社会经济路径(SSPs) /
- 中国乡村振兴核心区 /
- 人口预估 /
- 人口年龄结构 /
- 干旱暴露度
Abstract: In this study, 14 rural revitalization areas of China were selected as the study areas. The localized population parameters for the population development environment (PDE) model under different shared socio-economic paths (SSPs) were set by considering China’s population characteristics. Then, the population change characteristics of the 14 rural revitalization areas from 2020 to 2040 were estimated based on the PDE model. Combined with the multimodel drought assessment results under shared socioeconomic pathway–representative concentration pathway (SSP–RCP) scenarios, the change characteristics of drought exposed population in the future were compared with a baseline period (1995–2014). The results show that: (1) The population of China’s rural revitalization areas under SSP1, SSP4, and SSP5 scenarios show a downward trend; the population under the SSP2 remains stable and that under the SSP3 continues to grow; the population under each SSP scenario is projected to be 230–266 million in 2040, accounting for 16.7%–18.1% of China’s population. (2) In terms of the age structure, the proportion of the elderly population in 2040 under SSP1, SSP4, and SSP5 scenarios are relatively higher, and the number of freshmen is very small, which may result in an aging problem; the age structure is relatively balanced under the SSP2 scenario, the newborn population is high, and the working population is relatively large under the SSP3. (3) The annual average drought frequency and exposed population from 2020 to 2040 under all the SSP–RCP scenarios except for SSP3–7.0 are projected to increase compared with the baseline period; the spatial pattern of the change of population exposed to drought is relatively consistent under different SSP–RCP scenarios; more than 60% of the regions are projected to increase compared with the reference period, among which the increased range is the highest in the southwest and central regions. In contrast, the exposed population in Dabie Mountain Area is projected to decrease slightly. (4) Different age groups are affected by drought to varying degrees; children are more exposed to drought under the SSP3–7.0 scenario, while the elderly are more affected under the SSP5–8.5 scenario. -
图 7 SSPs-RCPs情景下中国乡村振兴核心区年干旱灾害暴露人口较历史基准时期变化:(a)SSP1-2.6;(b)SSP2-4.5;(c)SSP3-7.0;(d)SSP4-6.0;(e)SSP5-8.5
Figure 7. Changes of annual drought disaster exposed population in the rural revitalization areas in China compared with historical benchmark period under SSPs–RCPs: (a) SSP1-2.6; (b) SSP2-4.5; (c) SSP3-7.0; (d) SSP4-6.0; (e) SSP5-8.5
表 1 SSPs路径下人口相关参数假设
Table 1. Hypothesis of population-related parameters under shared socio-economic paths (SSPs)
路径 出生率 死亡率 迁移率 SSP1 低 低 中 SSP2 中 中 中 SSP3 高 高 低 SSP4 低 中 中 SSP5 低 低 高 表 2 2010~2040年中国不同生育率等级假设下的总和生育率
Table 2. Total fertility rate of different grade fertility level hypotheses in China from 2010 to 2040
生育率等级假设 总和生育率 2010年 2015年 2020年 2025年 2030年 2035年 2040年 低 1.18 1.52 1.67 1.53 1.44 1.42 1.40 中 1.18 1.60 1.85 1.80 1.80 1.80 1.80 高 1.18 1.68 2.04 2.07 2.16 2.18 2.20 表 3 SPEI干旱条件分类
Table 3. Classification of the dry conditions of Standardized Precipitation Evapotranspiration Index (SPEI)
SPEI 类别 0~−0.99 基本正常 −1~−1.49 轻度干旱 −1.5~−1.99 严重干旱 ≤−2.0 极度干旱 -
[1] Basten S, Sobotka T, Zeman K. 2013. Future Fertility in Low Fertility Countries, Vienna Institute of Demography Working Papers, No. 5/2013 [M/OL]. Oxford: Oxford University Press,http://hdl.handle.net/10419/97012. [2] 曹丽格, 方玉, 姜彤, 等. 2012. IPCC影响评估中的社会经济新情景(SSPs)进展 [J]. 气候变化研究进展, 8(1): 74−78. doi: 10.3969/j.issn.1673-1719.2012.01.012Cao Lige, Fang Yu, Jiang Tong, et al. 2012. Advances in shared socio-economic pathways for climate change research and assessment [J]. Progressus Inquisitiones de Mutatione Climatis (in Chinese), 8(1): 74−78. doi: 10.3969/j.issn.1673-1719.2012.01.012 [3] Goujon A, Fuchs R. 2013. The future fertility of high fertility countries: A model incorporating expert arguments [R/OL]. http://pure.iiasa.ac.at/10747. [4] 国家人口发展战略研究课题组. 2007. 国家人口发展战略研究报告[M]. 北京: 中国人口出版社, 1–10.Research Group on National Population Development Strategy. 2007. Report on China's National Strategy on Population Development (in Chinese) [M]. Beijing: China Population Publishing House, 1–10. [5] 国家统计局住户调查办公室. 2017. 中国农村贫困监测报告2017[M]. 北京: 中国统计出版社.National Bureau of Statistics Household Survey Office. 2017. China Rural Poverty Monitoring Report 2017 (in Chinese) [M]. Beijing: China Statistics Press. [6] 郭永中. 2002. 中国农村贫困人口问题研究 [J]. 学习与探索, (2): 49−54. doi: 10.3969/j.issn.1002-462X.2002.02.010Guo Yongzhong. 2002. Research on the phenomenon of impoverishment in the rural areas of China [J]. Study & Exploration (in Chinese), (2): 49−54. doi: 10.3969/j.issn.1002-462X.2002.02.010 [7] IPCC. 2013. Climate Change 2013: The physical science basis [M]//Stocker T F, Qin D, Plattner G K, et al. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1535 pp. [8] 姜彤, 赵晶, 景丞, 等. 2017. IPCC共享社会经济路径下中国和分省人口变化预估 [J]. 气候变化研究进展, 13(2): 128−137. doi: 10.12006/j.issn.1673-1719.2016.249Jiang Tong, Zhao Jing, Jing Cheng, et al. 2017. National and provincial population projected to 2100 under the shared socioeconomic pathways in China [J]. Climate Change Research (in Chinese), 13(2): 128−137. doi: 10.12006/j.issn.1673-1719.2016.249 [9] KC S, Lutz W. 2014. Demographic scenarios by age, sex and education corresponding to the SSP narratives [J]. Population and Environment, 35(3): 243−260. doi: 10.1007/s11111-014-0205-4 [10] KC S, Lutz W. 2017. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100 [J]. Global Environmental ChangePergamon, 42: 181−192. doi: 10.1016/j.gloenvcha.2014.06.004 [11] Li H B, Sheffield J, Wood E F. 2010. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching [J]. J. Geophys. Res., 115(D10): D10101. doi: 10.1029/2009JD012882 [12] 孟令国, 李超令, 胡广. 2014. 基于PDE模型的中国人口结构预测研究 [J]. 中国人口·资源与环境, 24(2): 132−141. doi: 10.3969/j.issn.1002-2104.2014.02.019Meng Lingguo, Li Chaoling, Hu Guang. 2014. Predictions of China’s population structure based on the PDF model [J]. China Population, Resources and Environment (in Chinese), 24(2): 132−141. doi: 10.3969/j.issn.1002-2104.2014.02.019 [13] Mondal S K, Huang J L, Wang Y J, et al. 2021. Doubling of the population exposed to drought over South Asia: CMIP6 multi-model-based analysis [J]. Science of the Total Environment, 771: 145186. doi: 10.1016/j.scitotenv.2021.145186 [14] Nie S P, Fu S W, Cao W H, et al. 2020. Comparison of monthly air and land surface temperature extremes simulated using CMIP5 and CMIP6 versions of the Beijing Climate Center climate model [J]. Theor. Appl. Climatol., 140(1): 487−502. doi: 10.1007/s00704-020-03090-x [15] O’Neill B C, Kriegler E, Riahi K, et al. 2014. A new scenario framework for climate change research: The concept of shared socioeconomic pathways [J]. Climatic Change, 122(3): 387−400. doi: 10.1007/s10584-013-0905-2 [16] O’Neill B C, Kriegler E, Ebi K L, et al. 2017. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century [J]. Global Environmental Change, 42: 169−180. doi: 10.1016/j.gloenvcha.2015.01.004 [17] Rogers A. 1975. Introduction to Multiregional Mathematical Demography [M]. New York: John Wiley. [18] Smith S K, Tayman J, Swanson D A. 2002. State and Local Population Projections: Methodology and Analysis [M]. Dordrecht: Springer. [19] 宋连春, 邓振镛, 董安祥, 等. 2003. 全球变化热门话题丛书—干旱[M]. 北京: 气象出版社, 117ppSong Lianchun, Deng Zhenyong, Dong Anxiang, et al. 2003. Global Change Hot Topic Series Drought (in Chinese) [M]. Beijing: China Meteorological Press, 117pp. [20] Su B D, Huang J L, Gemmer M, et al. 2016. Statistical downscaling of CMIP5 multi-model ensemble for projected changes of climate in the Indus River basin [J]. Atmospheric Research, 178–179: 138–149. doi: 10.1016/j.atmosres.2016.03.023 [21] Su B D, Huang J L, Fischer T, et al. 2018. Drought losses in China might double between the 1.5°C and 2.0°C warming [J]. Proceedings of the National Academy of Sciences of the United States of America, 115(42): 10600−10605. doi: 10.1073/pnas.1802129115 [22] The World Bank. 2016. Shock waves: Managing the impacts of climate change on poverty [R]. Washington DC: The World Bank, 179pp. [23] van Vuuren D P, Kriegler E, O’Neill B C, et al. 2014. A new scenario framework for climate change research: scenario matrix architecture [J]. Climatic Change, 122(3), : 373−386. doi: 10.1007/s10584-013-0906-1 [24] Wang A Q, Wang Y J, Su B D, et al. 2020. Comparison of changing population exposure to droughts in river basins of the Tarim and the Indus [J]. Earth's Future, 8(5): e2019EF001448. doi: 10.1029/2019EF001448 [25] Wang L, Chen W. 2014. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China [J]. Int. J. Climatol., 34(6): 2059−2078. doi: 10.1002/joc.3822 [26] 王学保, 蔡果兰. 2009. Logistic模型的参数估计及人口预测 [J]. 北京工商大学学报(自然科学版), 27(6): 75−78. doi: 10.3969/j.issn.1671-1513.2009.06.020Wang Xuebao, Cai Guolan. 2009. Parameter evaluation of logistic model and population prediction [J]. Journal of Beijing Technology and Business University (Natural Science Edition) (in Chinese), 27(6): 75−78. doi: 10.3969/j.issn.1671-1513.2009.06.020 [27] 王艳君, 景丞, 姜彤, 等. 2020. 2015~2050年中国分省城乡人口变化及其影响因素研究 [J]. 南京信息工程大学学报(自然科学版), 12(4): 395−405. doi: 10.13878/j.cnki.jnuist.2020.04.001Wang Yanjun, Jing Cheng, Jiang Tong, et al. 2020. Projection of provincial urban and rural population and its influencing factors in mainland China (2015−2050) [J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition) (in Chinese), 12(4): 395−405. doi: 10.13878/j.cnki.jnuist.2020.04.001 [28] 王永涛. 2017. 我国农村贫困人口问题及对策 [J]. 现代经济信息, (7): 4−5. doi: 10.3969/j.issn.1001-828X.2017.10.003Wang Yongtao. 2017. Problems and Countermeasures of rural poor population in China [J]. Modern Economic Information (in Chinese), (7): 4−5. doi: 10.3969/j.issn.1001-828X.2017.10.003 [29] Wood A W, Leung L R, Sridhar V, et al. 2004. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs [J]. Climatic Change, 62(1): 189−216. doi: 10.1023/B:CLIM.0000013685.99609.9e [30] 吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比 [J]. 地球物理学报, 56(4): 1102−1111. doi: 10.6038/cjg20130406Wu Jia, Gao Xuejie. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese J. Geophys. (in Chinese), 56(4): 1102−1111. doi: 10.6038/cjg20130406 [31] 解保华, 陈光辉, 孙嘉琳. 2010. 基于Leslie矩阵模型的中国人口总量与年龄结构预测 [J]. 广东商学院学报, 25(3): 15−21.Xie Baohua, Chen Guanghui, Sun Jialin. 2010. Forecasting the total amount of population and age structure in China based on Leslie matrix model [J]. Journal of Guangdong University of Business Studies (in Chinese), 25(3): 15−21. [32] Xu Y, Gao X J, Shen Y, et al. 2009. A daily temperature dataset over China and its application in validating a RCM simulation [J]. Adv. Atmos. Sci., 26(4): 763−772. doi: 10.1007/s00376-009-9029-z [33] Yamagata Y, Murakami D, Seya H. 2015. A comparison of grid-level residential electricity demand scenarios in Japan for 2050 [J]. Applied Energy, 158: 255−262. doi: 10.1016/j.apenergy.2015.08.079 [34] 曾嵘, 魏一鸣, 范英, 等. 2010. 北京市人口、资源、环境与经济协调发展分析与评价指标体系 [J]. 中国管理科学, 8(S1): 310−317. doi: 10.16381/j.cnki.issn1003-207x.2000.s1.044Zeng Rong, Wei Yiming, Fan Ying. 2010. Analysis and assessment indicator system for harmonization development among population, resource, environment and economy [J]. Chinese Journal of Management Science (in Chinese), 8(S1): 310−317. doi: 10.16381/j.cnki.issn1003-207x.2000.s1.044 [35] Zhai J, Mondal S K, Fischer T, et al. 2020. Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia [J]. Atmospheric Research, 246: 105111. doi: 10.1016/j.atmosres.2020.105111 [36] 翟振武, 李龙, 陈佳鞠. 2016. 全面两孩政策对未来中国人口的影响 [J]. 东岳论丛, 37(2): 77−88. doi: 10.15981/j.cnki.dongyueluncong.2016.02.012Zhai Zhenwu, Li Long, Chen Jiaju. 2016. The impact of the universal two-child policy on China's population in the future [J]. Dongyue Tribune (in Chinese), 37(2): 77−88. doi: 10.15981/j.cnki.dongyueluncong.2016.02.012 [37] 周天军, 邹立维, 陈晓龙. 2019. 第六次国际耦合模式比较计划(CMIP6)评述 [J]. 气候变化研究进展, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193Zhou Tianjun, Zou Liwei, Chen Xiaolong. 2019. Commentary on the coupled model Intercomparison project phase 6 (CMIP6) [J]. Climate Change Research (in Chinese), 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193 -