高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气候变化情景下中国乡村振兴核心区人口预估及在干旱灾害影响评估中的应用

林镔雷 王磊斌 林齐根 杨陈心怡 景丞 李瑷蔚 王雪晴 高淑媛 黄金龙 姜彤

林镔雷, 王磊斌, 林齐根, 等. 2022. 气候变化情景下中国乡村振兴核心区人口预估及在干旱灾害影响评估中的应用[J]. 气候与环境研究, 27(1): 134−146 doi: 10.3878/j.issn.1006-9585.2021.21114
引用本文: 林镔雷, 王磊斌, 林齐根, 等. 2022. 气候变化情景下中国乡村振兴核心区人口预估及在干旱灾害影响评估中的应用[J]. 气候与环境研究, 27(1): 134−146 doi: 10.3878/j.issn.1006-9585.2021.21114
LIN Binlei, WANG Leibin, LIN Qigen, et al. 2022. Projection of Population in Rural Revitalization Areas of China under Climate Change Scenario and Its Application in Drought Disaster Impact Assessment [J]. Climatic and Environmental Research (in Chinese), 27 (1): 134−146 doi: 10.3878/j.issn.1006-9585.2021.21114
Citation: LIN Binlei, WANG Leibin, LIN Qigen, et al. 2022. Projection of Population in Rural Revitalization Areas of China under Climate Change Scenario and Its Application in Drought Disaster Impact Assessment [J]. Climatic and Environmental Research (in Chinese), 27 (1): 134−146 doi: 10.3878/j.issn.1006-9585.2021.21114

气候变化情景下中国乡村振兴核心区人口预估及在干旱灾害影响评估中的应用

doi: 10.3878/j.issn.1006-9585.2021.21114
基金项目: 国家自然科学基金项目42071024、41571494,南京信息工程大学人才启动基金项目
详细信息
    作者简介:

    林镔雷,男,2000年出生,本科,主要研究方向为气候变化影响评估。E-mail: 201813890026@nuist.edu.cn

    通讯作者:

    林齐根,E-mail: linqigen@nuist.edu.cn

  • 中图分类号: P467

Projection of Population in Rural Revitalization Areas of China under Climate Change Scenario and Its Application in Drought Disaster Impact Assessment

Funds: National Natural Science Foundation of China (Grants 420710124 and 41571494), Starup Foundation for Introducing Talent of Nanjing University of Information Science and Technology
  • 摘要: 根据IPCC提出的共享社会经济路径(SSPs),本文以中国14个乡村振兴核心区为研究区,结合中国当前人口特征设定不同SSPs路径下本地化人口预估参数,采用人口—发展—环境(PDE)模型,预估2020~2040年人口变化特征。结合SSPs-RCPs情景下多模式的干旱评估结果,探讨未来乡村振兴核心区干旱暴露人口较基准期(1995~2014年)的变化特征。结果表明:(1)SSP1、SSP4和SSP5路径下中国乡村振兴核心区未来人口呈下降趋势,SSP2路径下人口保持稳定,SSP3路径下人口持续增长,各路径下2040年达到2.30×109~2.66×109人,且占全国比重16.7%~18.1%。(2)年龄结构上,SSP1、SSP4和SSP5路径下2040年的老龄人口比重大,新生人数极少,可能存在老龄化问题;SSP2路径下年龄结构相对均衡;SSP3路径下,新生人口数量较高,劳动人口相对较多。(3)2020~2040年,除SSP3-7.0情景外,其他情景下年平均干旱灾害频次和年平均干旱灾害暴露人口较基准期均呈增加趋势。各SSPs-RCPs情景下干旱灾害暴露人口变化的空间格局较一致,超过60%的区域较基准期呈增加趋势,其中西南及中部地区增加幅度最高,大别山片区等局部区域暴露度略有降低。(4)不同年龄段受干旱灾害影响程度不一,SSP3-7.0情景下少儿人口暴露于干旱灾害较多,老年人口则在SSP5-8.5情景下受影响程度更大。
  • 图  1  中国14个乡村振兴核心区分布

    Figure  1.  14 rural revitalization areas in China

    图  2  2010~2016年中国乡村振兴核心区人口数变化

    Figure  2.  Changes in population in the rural revitalization areas in China from 2010 to 2016

    图  3  2016年中国乡村振兴核心区人口密度分布

    Figure  3.  Population density distribution of the rural revitalization areas in China in 2016

    图  4  2020~2040年中国乡村振兴核心区(a)人口总数、(b)人口占全国比重

    Figure  4.  Population of the rural revitalization areas in China from 2020 to 2040: (a) Total population; (b) proportion of the population in the whole country

    图  5  2040年SSPs路径下中国乡村振兴核心区不同年龄段和性别的人口结构:(a)SSP1;(b)SSP2;(c)SSP3;(d)SSP4;(e)SSP5

    Figure  5.  Population structure of different age groups and genders in the rural revitalization areas under SSPs in 2040: (a) SSP1; (b) SSP2; (c) SSP3; (d) SSP4; (e) SSP5

    图  6  SSPs-RCPs情景下中国乡村振兴核心区基准期和未来时期的(a)年平均干旱灾害频次、(b)年平均干旱灾害暴露人口(REF表示基准期)

    Figure  6.  Annual average (a) population exposed to drought disasters and (b) frequency of drought disasters in the past and future of the rural revitalization areas in China, under SSPs–RCPs (REF refers to the baseline period )

    图  7  SSPs-RCPs情景下中国乡村振兴核心区年干旱灾害暴露人口较历史基准时期变化:(a)SSP1-2.6;(b)SSP2-4.5;(c)SSP3-7.0;(d)SSP4-6.0;(e)SSP5-8.5

    Figure  7.  Changes of annual drought disaster exposed population in the rural revitalization areas in China compared with historical benchmark period under SSPs–RCPs: (a) SSP1-2.6; (b) SSP2-4.5; (c) SSP3-7.0; (d) SSP4-6.0; (e) SSP5-8.5

    图  8  SSPs-RCPs情景下中国乡村振兴核心区2020~2040年平均干旱灾害暴露人口年龄结构分布

    Figure  8.  Age structure of the average drought disaster exposed population in China’s rural revitalization areas under SSPs–RCPs in 2020–2040

    表  1  SSPs路径下人口相关参数假设

    Table  1.   Hypothesis of population-related parameters under shared socio-economic paths (SSPs)

    路径出生率死亡率迁移率
    SSP1
    SSP2
    SSP3
    SSP4
    SSP5
    下载: 导出CSV

    表  2  2010~2040年中国不同生育率等级假设下的总和生育率

    Table  2.   Total fertility rate of different grade fertility level hypotheses in China from 2010 to 2040

    生育率等级假设总和生育率
    2010年2015年2020年2025年2030年2035年2040年
    1.181.521.671.531.441.421.40
    1.181.601.851.801.801.801.80
    1.181.682.042.072.162.182.20
    下载: 导出CSV

    表  3  SPEI干旱条件分类

    Table  3.   Classification of the dry conditions of Standardized Precipitation Evapotranspiration Index (SPEI)

    SPEI类别
    0~−0.99基本正常
    −1~−1.49轻度干旱
    −1.5~−1.99严重干旱
    ≤−2.0极度干旱
    下载: 导出CSV
  • [1] Basten S, Sobotka T, Zeman K. 2013. Future Fertility in Low Fertility Countries, Vienna Institute of Demography Working Papers, No. 5/2013 [M/OL]. Oxford: Oxford University Press,http://hdl.handle.net/10419/97012.
    [2] 曹丽格, 方玉, 姜彤, 等. 2012. IPCC影响评估中的社会经济新情景(SSPs)进展 [J]. 气候变化研究进展, 8(1): 74−78. doi: 10.3969/j.issn.1673-1719.2012.01.012

    Cao Lige, Fang Yu, Jiang Tong, et al. 2012. Advances in shared socio-economic pathways for climate change research and assessment [J]. Progressus Inquisitiones de Mutatione Climatis (in Chinese), 8(1): 74−78. doi: 10.3969/j.issn.1673-1719.2012.01.012
    [3] Goujon A, Fuchs R. 2013. The future fertility of high fertility countries: A model incorporating expert arguments [R/OL]. http://pure.iiasa.ac.at/10747.
    [4] 国家人口发展战略研究课题组. 2007. 国家人口发展战略研究报告[M]. 北京: 中国人口出版社, 1–10.

    Research Group on National Population Development Strategy. 2007. Report on China's National Strategy on Population Development (in Chinese) [M]. Beijing: China Population Publishing House, 1–10.
    [5] 国家统计局住户调查办公室. 2017. 中国农村贫困监测报告2017[M]. 北京: 中国统计出版社.

    National Bureau of Statistics Household Survey Office. 2017. China Rural Poverty Monitoring Report 2017 (in Chinese) [M]. Beijing: China Statistics Press.
    [6] 郭永中. 2002. 中国农村贫困人口问题研究 [J]. 学习与探索, (2): 49−54. doi: 10.3969/j.issn.1002-462X.2002.02.010

    Guo Yongzhong. 2002. Research on the phenomenon of impoverishment in the rural areas of China [J]. Study & Exploration (in Chinese), (2): 49−54. doi: 10.3969/j.issn.1002-462X.2002.02.010
    [7] IPCC. 2013. Climate Change 2013: The physical science basis [M]//Stocker T F, Qin D, Plattner G K, et al. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1535 pp.
    [8] 姜彤, 赵晶, 景丞, 等. 2017. IPCC共享社会经济路径下中国和分省人口变化预估 [J]. 气候变化研究进展, 13(2): 128−137. doi: 10.12006/j.issn.1673-1719.2016.249

    Jiang Tong, Zhao Jing, Jing Cheng, et al. 2017. National and provincial population projected to 2100 under the shared socioeconomic pathways in China [J]. Climate Change Research (in Chinese), 13(2): 128−137. doi: 10.12006/j.issn.1673-1719.2016.249
    [9] KC S, Lutz W. 2014. Demographic scenarios by age, sex and education corresponding to the SSP narratives [J]. Population and Environment, 35(3): 243−260. doi: 10.1007/s11111-014-0205-4
    [10] KC S, Lutz W. 2017. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100 [J]. Global Environmental ChangePergamon, 42: 181−192. doi: 10.1016/j.gloenvcha.2014.06.004
    [11] Li H B, Sheffield J, Wood E F. 2010. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching [J]. J. Geophys. Res., 115(D10): D10101. doi: 10.1029/2009JD012882
    [12] 孟令国, 李超令, 胡广. 2014. 基于PDE模型的中国人口结构预测研究 [J]. 中国人口·资源与环境, 24(2): 132−141. doi: 10.3969/j.issn.1002-2104.2014.02.019

    Meng Lingguo, Li Chaoling, Hu Guang. 2014. Predictions of China’s population structure based on the PDF model [J]. China Population, Resources and Environment (in Chinese), 24(2): 132−141. doi: 10.3969/j.issn.1002-2104.2014.02.019
    [13] Mondal S K, Huang J L, Wang Y J, et al. 2021. Doubling of the population exposed to drought over South Asia: CMIP6 multi-model-based analysis [J]. Science of the Total Environment, 771: 145186. doi: 10.1016/j.scitotenv.2021.145186
    [14] Nie S P, Fu S W, Cao W H, et al. 2020. Comparison of monthly air and land surface temperature extremes simulated using CMIP5 and CMIP6 versions of the Beijing Climate Center climate model [J]. Theor. Appl. Climatol., 140(1): 487−502. doi: 10.1007/s00704-020-03090-x
    [15] O’Neill B C, Kriegler E, Riahi K, et al. 2014. A new scenario framework for climate change research: The concept of shared socioeconomic pathways [J]. Climatic Change, 122(3): 387−400. doi: 10.1007/s10584-013-0905-2
    [16] O’Neill B C, Kriegler E, Ebi K L, et al. 2017. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century [J]. Global Environmental Change, 42: 169−180. doi: 10.1016/j.gloenvcha.2015.01.004
    [17] Rogers A. 1975. Introduction to Multiregional Mathematical Demography [M]. New York: John Wiley.
    [18] Smith S K, Tayman J, Swanson D A. 2002. State and Local Population Projections: Methodology and Analysis [M]. Dordrecht: Springer.
    [19] 宋连春, 邓振镛, 董安祥, 等. 2003. 全球变化热门话题丛书—干旱[M]. 北京: 气象出版社, 117pp

    Song Lianchun, Deng Zhenyong, Dong Anxiang, et al. 2003. Global Change Hot Topic Series Drought (in Chinese) [M]. Beijing: China Meteorological Press, 117pp.
    [20] Su B D, Huang J L, Gemmer M, et al. 2016. Statistical downscaling of CMIP5 multi-model ensemble for projected changes of climate in the Indus River basin [J]. Atmospheric Research, 178–179: 138–149. doi: 10.1016/j.atmosres.2016.03.023
    [21] Su B D, Huang J L, Fischer T, et al. 2018. Drought losses in China might double between the 1.5°C and 2.0°C warming [J]. Proceedings of the National Academy of Sciences of the United States of America, 115(42): 10600−10605. doi: 10.1073/pnas.1802129115
    [22] The World Bank. 2016. Shock waves: Managing the impacts of climate change on poverty [R]. Washington DC: The World Bank, 179pp.
    [23] van Vuuren D P, Kriegler E, O’Neill B C, et al. 2014. A new scenario framework for climate change research: scenario matrix architecture [J]. Climatic Change, 122(3), : 373−386. doi: 10.1007/s10584-013-0906-1
    [24] Wang A Q, Wang Y J, Su B D, et al. 2020. Comparison of changing population exposure to droughts in river basins of the Tarim and the Indus [J]. Earth's Future, 8(5): e2019EF001448. doi: 10.1029/2019EF001448
    [25] Wang L, Chen W. 2014. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China [J]. Int. J. Climatol., 34(6): 2059−2078. doi: 10.1002/joc.3822
    [26] 王学保, 蔡果兰. 2009. Logistic模型的参数估计及人口预测 [J]. 北京工商大学学报(自然科学版), 27(6): 75−78. doi: 10.3969/j.issn.1671-1513.2009.06.020

    Wang Xuebao, Cai Guolan. 2009. Parameter evaluation of logistic model and population prediction [J]. Journal of Beijing Technology and Business University (Natural Science Edition) (in Chinese), 27(6): 75−78. doi: 10.3969/j.issn.1671-1513.2009.06.020
    [27] 王艳君, 景丞, 姜彤, 等. 2020. 2015~2050年中国分省城乡人口变化及其影响因素研究 [J]. 南京信息工程大学学报(自然科学版), 12(4): 395−405. doi: 10.13878/j.cnki.jnuist.2020.04.001

    Wang Yanjun, Jing Cheng, Jiang Tong, et al. 2020. Projection of provincial urban and rural population and its influencing factors in mainland China (2015−2050) [J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition) (in Chinese), 12(4): 395−405. doi: 10.13878/j.cnki.jnuist.2020.04.001
    [28] 王永涛. 2017. 我国农村贫困人口问题及对策 [J]. 现代经济信息, (7): 4−5. doi: 10.3969/j.issn.1001-828X.2017.10.003

    Wang Yongtao. 2017. Problems and Countermeasures of rural poor population in China [J]. Modern Economic Information (in Chinese), (7): 4−5. doi: 10.3969/j.issn.1001-828X.2017.10.003
    [29] Wood A W, Leung L R, Sridhar V, et al. 2004. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs [J]. Climatic Change, 62(1): 189−216. doi: 10.1023/B:CLIM.0000013685.99609.9e
    [30] 吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比 [J]. 地球物理学报, 56(4): 1102−1111. doi: 10.6038/cjg20130406

    Wu Jia, Gao Xuejie. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese J. Geophys. (in Chinese), 56(4): 1102−1111. doi: 10.6038/cjg20130406
    [31] 解保华, 陈光辉, 孙嘉琳. 2010. 基于Leslie矩阵模型的中国人口总量与年龄结构预测 [J]. 广东商学院学报, 25(3): 15−21.

    Xie Baohua, Chen Guanghui, Sun Jialin. 2010. Forecasting the total amount of population and age structure in China based on Leslie matrix model [J]. Journal of Guangdong University of Business Studies (in Chinese), 25(3): 15−21.
    [32] Xu Y, Gao X J, Shen Y, et al. 2009. A daily temperature dataset over China and its application in validating a RCM simulation [J]. Adv. Atmos. Sci., 26(4): 763−772. doi: 10.1007/s00376-009-9029-z
    [33] Yamagata Y, Murakami D, Seya H. 2015. A comparison of grid-level residential electricity demand scenarios in Japan for 2050 [J]. Applied Energy, 158: 255−262. doi: 10.1016/j.apenergy.2015.08.079
    [34] 曾嵘, 魏一鸣, 范英, 等. 2010. 北京市人口、资源、环境与经济协调发展分析与评价指标体系 [J]. 中国管理科学, 8(S1): 310−317. doi: 10.16381/j.cnki.issn1003-207x.2000.s1.044

    Zeng Rong, Wei Yiming, Fan Ying. 2010. Analysis and assessment indicator system for harmonization development among population, resource, environment and economy [J]. Chinese Journal of Management Science (in Chinese), 8(S1): 310−317. doi: 10.16381/j.cnki.issn1003-207x.2000.s1.044
    [35] Zhai J, Mondal S K, Fischer T, et al. 2020. Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia [J]. Atmospheric Research, 246: 105111. doi: 10.1016/j.atmosres.2020.105111
    [36] 翟振武, 李龙, 陈佳鞠. 2016. 全面两孩政策对未来中国人口的影响 [J]. 东岳论丛, 37(2): 77−88. doi: 10.15981/j.cnki.dongyueluncong.2016.02.012

    Zhai Zhenwu, Li Long, Chen Jiaju. 2016. The impact of the universal two-child policy on China's population in the future [J]. Dongyue Tribune (in Chinese), 37(2): 77−88. doi: 10.15981/j.cnki.dongyueluncong.2016.02.012
    [37] 周天军, 邹立维, 陈晓龙. 2019. 第六次国际耦合模式比较计划(CMIP6)评述 [J]. 气候变化研究进展, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193

    Zhou Tianjun, Zou Liwei, Chen Xiaolong. 2019. Commentary on the coupled model Intercomparison project phase 6 (CMIP6) [J]. Climate Change Research (in Chinese), 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  265
  • HTML全文浏览量:  56
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 网络出版日期:  2021-10-16
  • 刊出日期:  2022-01-25

目录

    /

    返回文章
    返回