Vegetation Changes and Their Causes in the Yellow River Basin under the Background of Climate Change
-
摘要: 研究黄河流域植被的时空变化及其影响因素,对生态文明建设政策的制定具有重要意义。基于2001~2020年MODIS(Moderate Resolution Imaging Spectroradiometer)植被指数(Normalized Different Vegetation Index,NDVI)数据集及同期气象数据,运用均值法、一元线性回归、偏相关性分析和回归残差法等方法研究了近20年黄河流域植被时空变化及驱动因素。结果表明:黄河流域NDVI整体呈上升趋势并具有较大的空间异质性,其中黄河中游NDVI增长幅度最大,为0.0496 (10 a)−1。生长季受降水和沿黄灌区耕作的影响,西部地区、东南部区域和宁夏平原、河套平原植被指数明显较高;从整个流域来看,降水和温度变化对NDVI的贡献分别为32.6%和15.9%,其中降水对NDVI变化的贡献主要体现在黄河上游(50.7%),而温度的贡献则在黄河下游表现最突出(32.3%);20年来,人类活动和气候变化分别对黄河流域植被变化贡献了78%和22%,其中人类活动贡献率超过80%的区域主要集中在黄土高原中部区域;整个黄河流域NDVI与干旱程度有显著的正相关性,尤其在陇中黄土高原和河东沙区等区域。黄河上游NDVI与改进的帕默尔干旱指数scPDSI的相关性最高,而下游相对较低。Abstract: Understanding the spatiotemporal variations of vegetation in the Yellow River basin and their influencing factors is important to formulate policies for the construction of ecological civilization. Based on the MODIS (Moderate Resolution Imaging Spectroradiometer) vegetation index (normalized difference vegetation index, NDVI) data and meteorological observations from 2001 to 2020, this study investigates the spatiotemporal evolution characteristics and driving factors of vegetation through the mean method, unary linear regression, partial correlation analysis, and multivariate residual trend analysis. The results show that the increased NDVI dominates most of the Yellow River basin but with large spatiotemporal variability. In particular, the largest increased NDVI approaches to 0.0496 per 10 years in the middle reaches of the Yellow River basin. In the growing season, areas with significantly positive NDVI increase mainly in the western and southeastern of the Yellow River basin, most evidently in irrigated areas along the Ningxia and Hetao Plain. Both precipitation and temperature play an important role in the NDVI changes for most areas of the Yellow River basin. For the Yellow River basin as a whole, contributions from the precipitation and temperature to the NDVI change approach to 32.6% and 15.9%, respectively. Contributions from the precipitation are mainly found in the upper reaches (50.7%), while those from the temperature are mainly seen in the lower reaches (32.3%). On the other hand, human activities and climate change can account for 78% and 22% of the NDVI changes in the Yellow River basin, respectively. In particular, contributions from human activities are more than 80% in the central region of the Loess Plateau. Meanwhile, the drought is also a key driver to cause the increased NDVI changes in the Loess Plateau in central Gansu and the Hedong sand area (with a correlation of 0.6), which is especially higher in the upper reaches of the Yellow River basin.
-
Key words:
- Yellow River basin /
- NDVI index /
- Spatiotemporal variations /
- Climate factors /
- Human activities /
- Drought
-
图 3 2001~2020年黄河流域及其3个子流域NDVI时间序列。 y1、y2、y3和y4分别是4个区域NDVI随时间变化的线性趋势,均通过了0.05的显著性检验
Figure 3. NDVI time series of the Yellow River basin and its three sub-basins from 2001 to 2020. y1, y2, y3, and y4 represent the linear trends of the NDVI with time over these four regions, respectively. All of them are statistically significant at the 0.05 level
图 4 2001~2020年黄河流域年际平均(第一行)和生长季平均(第二行)(a、d)NDVI平均值、(b、e)NDVI变化趋势(单位:a−1)以及(c、f)NDVI变化趋势显著性空间分布
Figure 4. Spatial distribution of the annual averaged (first line) and growing season averaged (second line) (a, d) NDVI, (b, e) trend of NDVI (units: a−1), and (c, f) significance of the NDVI trend in the Yellow River basin from 2001 to 2020
图 5 2001~2020年黄河流域NDVI与(a、b)温度及(c、d)降水量偏相关系数以及显著性的空间分布:(a、c)偏相关系数;(b、d)显著性
Figure 5. Spatial distribution of partial correlation correlations and significance between the NDVI and (a, c) temperature and (b, d) precipitation in the Yellow River basin from 2001 to 2020: (a, c) Partial correlation; (b, d) significance
图 6 2001~2020年(a)黄河流域及其(b)上游、(c)中游、(c)下游3个子流域NDVI与温度时间序列。y1和y2分别表示NDVI和气温随时间变化的线性趋势;R是NDVI和温度时间序列的相关系数;*代表通过了0.05的显著性检验
Figure 6. Time series of the NDVI and temperature in (a) the Yellow River basin and the (b) upper reaches, (c) middle reaches, and (d) lower reaches of the Yellow River from 2001 to 2020. y1 and y2 represent the linear trends of the NDVI and temperature, respectively; R is the correlation coefficient between the NDVI and temperature time series; the number with an asterisk is statistically significant at the 0.05 level
图 7 2001~2020年(a)黄河流域及其(b)上游、(c)中游、(c)下游3个子流域NDVI与降水量时间序列。y1和y2分别表示NDVI和降水随时间变化的线性趋势;R是NDVI和降水时间序列的相关系数;*代表通过了0.05的显著性检验
Figure 7. Time series of the partial correlation analysis between the NDVI and precipitation in (a) the Yellow River basin and the (b) upper reaches, (c) middle reaches, and (d) lower reaches of the Yellow River from 2001 to 2020. y1 and y2 represent the linear trends of the NDVI and precipitation, respectively; R is the correlation coefficient between the NDVI and precipitation time series; the number with an asterisk is statistically significant at the 0.05 level
图 8 2001~2020年黄河流域NDVI受(a)气候变化和(b)人类活动影响的变化趋势以及(c)气候变化和(d)人类活动对黄河流域NDVI变化贡献率的空间分布
Figure 8. Spatial distribution of the impacts of (a) climatic and (b) human activities change trend and contribution of (c) climate change and (d) human activities to the NDVI in the Yellow River basin from 2001 to 2020
图 11 2001~2020年(a)黄河流域及其(b)上游、(c)中游、(c)下游3个子流域NDVI与scPDSI时间序列。y1和y2分别表示NDVI和干旱随时间变化的线性趋势;R是NDVI和干旱时间序列的相关系数;*代表通过了0.05的显著性检验
Figure 11. Time series of correlation analysis between the NDVI and drought in (a) the Yellow River basin and the (b) upper reaches, (c) middle reaches, and (d) lower reaches of the Yellow River from 2001 to 2020. y1 and y2 represent the linear trend of the NDVI and drought, respectively; R is the correlation coefficient between the NDVI and drought time series; the number with an asterisk is statistically significant at the 0.05 level
表 1 不同驱动因素下气候变化和人类活动对NDVI贡献率计算方法
Table 1. Calculation method of the contribution rate of climate change and human activities to the NDVI under different driving factors
NDVI实测值斜率 NDVI的模拟值斜率 NDVI残差值斜率 气候变化贡献率 人类活动贡献率 驱动因素 >0(植被改善) >0 >0 NDVI的模拟值斜率/NDVI
实测值斜率×100%NDVI的残差值斜率/NDVI
实测值斜率×100%气候变化和人类活动共同促进植被改善 >0 <0 100% 0 气候变化导致植被改善 <0 >0 0 100% 人类活动导致植被改善 <0(植被退化) <0 <0 NDVI的模拟值斜率/NDVI
实测值斜率×100%NDVI的残差值斜率/NDVI
实测值斜率×100%气候变化和人类活动共同促进植被退化 <0 >0 100% 0 气候变化导致植被退化 >0 <0 0 100% 人类活动导致植被退化 -
[1] Aly A A, Al-Omran A M, Sallam A S, et al. 2016. Vegetation cover change detection and assessment in arid environment using multi-temporal remote sensing images and ecosystem management approach [J]. Solid Earth, 7(2): 713−725. doi: 10.5194/se-7-713-2016 [2] 陈晨, 王义民, 黎云云, 等. 2021. 黄河流域1982~2015年不同气候区植被变化规律及其影响因素 [J/OL]. 长江科学院院报: 1–9. http: //kns. cnki. net/kcms/detail/42.1171. TV. 20210511.1449. 005. html. Chen Chen, Wang Yimin, Li Yunyun, et al. (2021-05-12). Vegetation changes and influencing factors in different climatic regions of the Yellow River basin from 1982 to 2015 [J/OL]. Journal of Yangtze River Scientific Research Institute (in Chinese): 1–9. http://kns.cnki.net/kcms/detail/42.1171.TV.20210511.1449.005.html. [3] 邓晨晖, 白红英, 高山, 等. 2018. 秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应 [J]. 自然资源学报, 33(3): 425−438. doi: 10.11849/zrzyxb.20170139Deng Chenhui, Bai Hongying, Gao Shan, et al. 2018. Spatial–temporal variation of the vegetation coverage in Qinling Mountains and its dual response to climate change and human activities [J]. Journal of Natural Resources (in Chinese), 33(3): 425−438. doi: 10.11849/zrzyxb.20170139 [4] 高江波, 焦珂伟, 吴绍洪. 2019. 1982~2013年中国植被NDVI空间异质性的气候影响分析 [J]. 地理学报, 74(3): 534−543. doi: 10.11821/dlxb201903010Gao Jiangbo, Jiao Kewei, Wu Shaohong. 2019. Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982–2013 [J]. Acta Geographica Sinica (in Chinese), 74(3): 534−543. doi: 10.11821/dlxb201903010 [5] 谷佳贺, 薛华柱, 董国涛, 等. 2021. 黄河流域NDVI/土地利用对蒸散发时空变化的影响 [J]. 干旱区地理, 44(1): 158−167. doi: 10.12118/j.issn.10006060.2021.01.17Gu Jiahe, Xue Huazhu, Dong Guotao, et al. 2021. Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River basin [J]. Arid Land Geography (in Chinese), 44(1): 158−167. doi:10.12118/j.issn.1000–6060.2021.01.17 [6] 郭帅, 裴艳茜, 胡胜, 等. 2020. 黄河流域植被指数对气候变化的响应及其与水沙变化的关系 [J]. 水土保持通报, 40(3): 1−7, 13. doi: 10.13961/j.cnki.stbctb.2020.03.001Guo Shuai, Pei Yanqian, Hu Sheng, et al. 2020. Response of vegetation index to climate change and their relationship with runoff-sediment change in Yellow River basin [J]. Bulletin of Soil and Water Conservation (in Chinese), 40(3): 1−7, 13. doi: 10.13961/j.cnki.stbctb.2020.03.001 [7] 韩磊, 火红, 刘钊, 等. 2021. 基于地形梯度的黄河流域中段植被覆盖时空分异特征——以延安市为例 [J]. 应用生态学报, 32(5): 1581−1592. doi: 10.13287/j.1001-9332.202105.014Han Lei, Huo Hong, Liu Zhao, et al. 2021. Spatial and temporal variations of vegetation coverage in the middle section of Yellow River basin based on terrain gradient: Taking Yan’an City as an example [J]. Chinese J. Appl. Ecol. (in Chinese), 32(5): 1581−1592. doi: 10.13287/j.1001-9332.202105.014 [8] 何远梅, 姚文俊, 张岩, 等. 2015. 黄土高原区植被恢复的空间差异性分析 [J]. 中国水土保持科学, 13(2): 63−69. doi: 10.16843/j.sswc.2015.02.011He Yuanmei, Yao Wenjun, Zhang Yan, et al. 2015. Spatial variability of vegetation restoration on the Loess Plateau based on MODIS/NDVI [J]. Science of Soil and Water Conservation (in Chinese), 13(2): 63−69. doi: 10.16843/j.sswc.2015.02.011 [9] 贺振, 贺俊平. 2017. 近32年黄河流域植被覆盖时空演化遥感监测 [J]. 农业机械学报, 48(2): 179−185. doi: 10.6041/j.issn.1000-1298.2017.02.024He Zhen, He Junping. 2017. Remote sensing on spatio–temporal evolution of vegetation cover in the Yellow River basin during 1982–2013 [J]. Transactions of the Chinese Society for Agricultural Machinery (in Chinese), 48(2): 179−185. doi: 10.6041/j.issn.1000-1298.2017.02.024 [10] 金凯, 王飞, 韩剑桥, 等. 2020. 1982~2015年中国气候变化和人类活动对植被NDVI变化的影响 [J]. 地理学报, 75(5): 961−974. doi: 10.11821/dlxb202005006Jin Kai, Wang Fei, Han Jianqiao, et al. 2020. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982–2015 [J]. Acta Geogr. Sinica (in Chinese), 75(5): 961−974. doi: 10.11821/dlxb202005006 [11] 李楠, 韩金锋, 阳维宗, 等. 2021. 2000~2019年若尔盖高原植被生长季NDVI时空变化特征研究 [J]. 西南林业大学学报(自然科学), 41(1): 133−139.Li Nan, Han Jinfeng, Yang Weizong, et al. 2021. Spatio-temporal variation of NDVI in the vegetation growing season of the Zoige Plateau from 2000 to 2019 [J]. Journal of Southwest Forestry University (Natural Sciences) (in Chinese), 41(1): 133−139. [12] 梁守真, 马万栋, 施平, 等. 2012. 基于MODIS NDVI数据的复种指数监测——以环渤海地区为例 [J]. 中国生态农业学报, 20(12): 1657−1663. doi: 10.3724/SP.J.1011.2012.01657Liang Shouzhen, Ma Wandong, Shi Ping, et al. 2012. Monitoring multiple cropping index using MODIS NDVI data—A case study of Bohai Rim [J]. Chinese Journal of Eco-Agriculture (in Chinese), 20(12): 1657−1663. doi: 10.3724/SP.J.1011.2012.01657 [13] 刘斌, 孙艳玲, 王中良, 等. 2015. 华北地区植被覆盖变化及其影响因子的相对作用分析 [J]. 自然资源学报, 30(1): 12−23. doi: 10.11849/zrzyxb.2015.01.002Liu Bin, Sun Yanling, Wang Zhongliang, et al. 2015. Analysis of the vegetation cover change and the relative role of its influencing factors in North China [J]. Journal of Natural Resources (in Chinese), 30(1): 12−23. doi: 10.11849/zrzyxb.2015.01.002 [14] 柳春. 2013. 黄河流域近50年气候变化及未来预估[D]. 南京信息工程大学硕士学位论文, 59ppLiu Chun. 2013. Analysis of climate change in the last 50 years and the projection in the Yellow River basin[D]. M. S. thesis (in Chinese), Nanjing University of Information Science & Technology, 59pp. [15] 刘启兴, 董国涛, 景海涛, 等. 2019. 2000~2016年黄河源区植被NDVI变化趋势及影响因素 [J]. 水土保持研究, 26(3): 86−92. doi: 10.13869/j.cnki.rswc.2019.03.013Liu Qixing, Dong Guotao, Jing Haitao, et al. 2019. Change trend of vegetation NDVI and its influencing factors in the source region of the Yellow River in the period from 2000 to 2016 [J]. Research of Soil and Water Conservation (in Chinese), 26(3): 86−92. doi: 10.13869/j.cnki.rswc.2019.03.013 [16] 刘振元, 张杰, 陈立. 2017. 青藏高原植被指数最新变化特征及其与气候因子的关系 [J]. 气候与环境研究, 22(3): 289–300. Liu Zhenyuan, Zhang Jie, Chen Li. 2017. The latest change in the Qinghai−Tibetan Plateau vegetation index and its relationship with climate factors [J]. Climatic and Environmental Research (in Chinese), 22(3): 289−300. doi: 10.3878/j.issn.1006-9585.2017.14247 [17] 马勇刚, 黄粤. 2018. 基于1982~2013年NDVI数据的新疆30年植被状况季节与年际趋势分析 [J]. 气候与环境研究, 23(1): 26−36. doi: 10.3878/j.issn.1006-9585.2017.16116Ma Yonggang, Huang Yue. 2018. Interannual and seasonal trend analysis of vegetation condition in Xinjiang based on 1982–2013 NDVI data [J]. Climatic and Environmental Research (in Chinese), 23(1): 26−36. doi: 10.3878/j.issn.1006-9585.2017.16116 [18] 马柱国, 符淙斌, 周天军, 等. 2020. 黄河流域气候与水文变化的现状及思考 [J]. 中国科学院院刊, 35(1): 52−60. doi: 10.16418/j.issn.1000-3045.20191223002Ma Zhuguo, Fu Congbin, Zhou Tianjun, et al. 2020. Status and ponder of climate and hydrology changes in the Yellow River basin [J]. Bulletin of Chinese Academy of Sciences (in Chinese), 35(1): 52−60. doi: 10.16418/j.issn.1000-3045.20191223002 [19] 潘攀, 祝亚丽, 王纪军. 2014. 近50年黄河流域气温变化特征及背景分析 [J]. 气候与环境研究, 19(4): 477−485. doi: 10.3878/j.issn.1006-9585.2013.13099Pan Pan, Zhu Yali, Wang Jijun. 2014. Spatial−temporal variations of temperature and the cause analyses in the Yellow River valley during recent 50 years [J]. Climatic and Environmental Research (in Chinese), 19(4): 477−485. doi: 10.3878/j.issn.1006-9585.2013.13099 [20] 彭保发, 陈端吕, 李文军, 等. 2013. 土地利用景观格局的稳定性研究——以常德市为例 [J]. 地理科学, 33(12): 1484−1488. doi: 10.13249/j.cnki.sgs.2013.12.040Peng Baofa, Chen Duanlv, Li Wenjun, et al. 2013. Stability of landscape pattern of land use: A case study of Changde [J]. Scientia Geographica Sinica (in Chinese), 33(12): 1484−1488. doi: 10.13249/j.cnki.sgs.2013.12.040 [21] Peng S Z, Ding Y X, Liu W Z, et al. 2019. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017 [J]. Earth System Science Data, 11(4): 1931−1946. doi: 10.5194/essd-11-1931-2019 [22] 宋永永, 薛东前, 夏四友, 等. 2021. 近40a黄河流域国土空间格局变化特征与形成机理 [J]. 地理研究, 40(5): 1445−1463. doi: 10.11821/dlyj020191065Song Yongyong, Xue Dongqian, Xia Siyou, et al. 2021. Change characteristics and formation mechanism of the territorial spatial pattern in the Yellow River basin from 1980 to 2018, China [J]. Geographical Research (in Chinese), 40(5): 1445−1463. doi: 10.11821/dlyj020191065 [23] Wang F, Ge Q S, Wang S W, et al. 2015. A new estimation of urbanization's contribution to the warming trend in China [J]. J. Climate, 28(22): 8923−8938. doi: 10.1175/JCLI-D-14-00427.1 [24] Wang Q, Zhang Q P, Zhou W. 2012. Grassland coverage changes and analysis of the driving forces in Maqu county [J]. Physics Procedia, 33: 1292−1297. doi: 10.1016/j.phpro.2012.05.213 [25] 王丽霞, 张珈玮, 孟妮娜, 等. 2020. 基于CA-Markov的渭河流域NDVI时空变化模拟及预测 [J]. 水土保持研究, 27(4): 206−212. doi: 10.13869/j.cnki.rswc.2020.04.027Wang Lixia, Zhang Jiawei, Meng Nina, et al. 2020. Simulation and prediction of temporal and spatial changes of NDVI in Weihe River basin based on CA-Markov [J]. Research of Soil and Water Conservation (in Chinese), 27(4): 206−212. doi: 10.13869/j.cnki.rswc.2020.04.027 [26] 王一, 郝利娜, 赵美龄, 等. 2021. 2001~2018年重庆植被NDVI变化及其对气候因子和人类活动的响应 [J]. 水土保持研究, 28(5): 222−229. doi: 10.13869/j.cnki.rswc.2021.05.025Wang Yi, Hao Li’na, Zhao Meiling, et al. 2021. Variation of vegetation NDVI and its response to climatic factors and human activities in Chongqing from 2001 to 2018 [J]. Research of Soil and Water Conservation (in Chinese), 28(5): 222−229. doi: 10.13869/j.cnki.rswc.2021.05.025 [27] Xu Y F, Yang J, Chen Y N. 2016. NDVI-based vegetation responses to climate change in an arid area of China [J]. Theor. Appl. Climatol., 126(1-2): 213−222. doi: 10.1007/s00704-015-1572-1 [28] 颜明, 贺莉, 王随继, 等. 2018. 基于NDVI的1982~2012年黄河流域多时间尺度植被覆盖变化 [J]. 中国水土保持科学, 16(3): 86−94. doi: 10.16843/j.sswc.2018.03.011Yan Ming, He Li, Wang Suiji, et al. 2018. Changing trends of NDVI in the Yellow River basin from 1982 to 2012 at different temporal scales [J]. Science of Soil and Water Conservation (in Chinese), 16(3): 86−94. doi: 10.16843/j.sswc.2018.03.011 [29] 叶培龙, 张强, 王莺, 等. 2020. 1980~2018年黄河上游气候变化及其对生态植被和径流量的影响 [J]. 大气科学学报, 43(6): 967−979. doi: 10.13878/j.cnki.dqkxxb.20200924001Ye Peilong, Zhang Qiang, Wang Ying, et al. 2020. Climate change in the upper Yellow River basin and its impact on ecological vegetation and runoff from 1980 to 2018 [J]. Trans. Atmos. Sci. (in Chinese), 43(6): 967−979. doi: 10.13878/j.cnki.dqkxxb.20200924001 [30] 易浪, 任志远, 张翀, 等. 2014. 黄土高原植被覆盖变化与气候和人类活动的关系 [J]. 资源科学, 36(1): 166−174.Yi Lang, Ren Zhiyuan, Zhang Chong, et al. 2014. Vegetation cover, climate and human activities on the Loess Plateau [J]. Resources Science (in Chinese), 36(1): 166−174. [31] 于泉洲, 梁春玲, 刘煜杰, 等. 2015. 基于MODIS的山东省植被覆盖时空变化及其原因分析 [J]. 生态环境学报, 24(11): 1799−1807. doi: 10.16258/j.cnki.1674-5906.2015.11.007Yu Quanzhou, Liang Chunling, Liu Yujie, et al. 2015. Analysis of vegetation spatio-temporal variation and driving factors in Shandong Province based on MODIS [J]. Ecology and Environmental Sciences (in Chinese), 24(11): 1799−1807. doi: 10.16258/j.cnki.1674-5906.2015.11.007 [32] 袁丽华, 蒋卫国, 申文明, 等. 2013. 2000~2010年黄河流域植被覆盖的时空变化 [J]. 生态学报, 33(24): 7798−7806. doi: 10.5846/stxb201305281212Yuan Lihua, Jiang Weiguo, Shen Wenming, et al. 2013. The spatio–temporal variations of vegetation cover in the Yellow River basin from 2000 to 2010 [J]. Acta Ecologica Sinica (in Chinese), 33(24): 7798−7806. doi: 10.5846/stxb201305281212 [33] 赵倩倩, 张京朋, 赵天保, 等. 2021. 2000年以来中国区域植被变化及其对气候变化的响应 [J]. 高原气象, 40(2): 292−301. doi: 10.7522/j.issn.1000-0534.2020.00025Zhao Qianqian, Zhang Jingpeng, Zhao Tianbao, et al. 2021. Vegetation changes and its response to climate change in China since 2000 [J]. Plateau Meteorology (in Chinese), 40(2): 292−301. doi: 10.7522/j.issn.1000-0534.2020.00025 [34] 张华, 安慧敏. 2021. 基于GEE的1987~2019年民勤绿洲NDVI变化特征及趋势分析 [J]. 中国沙漠, 41(1): 28−36. doi: 10.7522/j.issn.1000-694X.2020.00094Zhang Hua, An Huimin. 2021. Analysis of NDVI variation characteristics and trend of Minqin Oasis from 1987 to 2019 based on GEE [J]. Journal of Desert Research (in Chinese), 41(1): 28−36. doi: 10.7522/j.issn.1000-694X.2020.00094 [35] 张静, 杜加强, 盛芝露, 等. 2021. 1982~2015年黄河流域植被NDVI时空变化及影响因素分析 [J]. 生态环境学报, 30(5): 929−937. doi: 10.16258/j.cnki.1674-5906.2021.05.005Zhang Jing, Du Jiaqiang, Sheng Zhilu, et al. 2021. Spatio−temporal changes of vegetation cover and their influencing factors in the Yellow River basin from 1982 to 2015 [J]. Ecology and Environmental Sciences (in Chinese), 30(5): 929−937. doi: 10.16258/j.cnki.1674-5906.2021.05.005 [36] 张亚玲, 苏惠敏, 张小勇. 2014. 1998~2012年黄河流域植被覆盖变化时空分析 [J]. 中国沙漠, 34(2): 597−602. doi: 10.7522/j.issn.1000-694X.2013.00353Zhang Yaling, Su Huimin, Zhang Xiaoyong. 2014. The spatial–temporal changes of vegetation restoration in the Yellow River basin from 1998 to 2012 [J]. Journal of Desert Research (in Chinese), 34(2): 597−602. doi: 10.7522/j.issn.1000-694X.2013.00353 [37] 张月丛, 赵志强, 李双成, 等. 2008. 基于SPOT NDVI的华北北部地表植被覆盖变化趋势 [J]. 地理研究, 27(4): 745−754. doi: 10.3321/j.issn:1000-0585.2008.04.003Zhang Yuecong, Zhao Zhiqiang, Li Shuangcheng, et al. 2008. Indicating variation of surface vegetation cover using SPOT NDVI in the northern part of North China [J]. Geographical Research (in Chinese), 27(4): 745−754. doi: 10.3321/j.issn:1000-0585.2008.04.003 [38] 张志强, 刘欢, 左其亭, 等. 2021. 2000~2019年黄河流域植被覆盖度时空变化 [J]. 资源科学, 43(4): 849−858. doi: 10.18402/resci.2021.04.18Zhang Zhiqiang, Liu Huan, Zuo Qiting, et al. 2021. Spatio–temporal change of fractional vegetation cover in the Yellow River basin during 2000–2019 [J]. Resources Science (in Chinese), 43(4): 849−858. doi: 10.18402/resci.2021.04.18 [39] 钟莉娜, 赵文武. 2013. 基于NDVI的黄土高原植被覆盖变化特征分析 [J]. 中国水土保持科学, 11(5): 57−62. doi: 10.16843/j.sswc.2013.05.009Zhong Li’na, Zhao Wenwu. 2013. Detecting the dynamic changes of vegetation coverage in the Loess Plateau of China using NDVI data [J]. Science of Soil and Water Conservation (in Chinese), 11(5): 57−62. doi: 10.16843/j.sswc.2013.05.009 -