Historical Change and Future Projection of Spring Frost in China
-
摘要: 春季的霜冻事件是北半球温带地区与农业相关的最严重的极端事件之一。在气候变化背景下,探究整个中国地区春霜冻的变化趋势和未来可能变化有利于增进人们对春霜冻的认识,对我国未来农业结构调整有一定的参考价值。本文采用不易受离群值影响且考虑了自相关的非参数方法,在分析1960~2020年观测资料的基础上,利用24个耦合模式比较计划第6阶段(Coupled Model Intercomparison Project Phase 6, CMIP6)模式模拟的中等辐射强迫(SSP2-4.5)情景下的逐日最低温数据,在评估模式模拟性能后对中国地区未来(2021~2100年)的春霜冻日数、终霜日的变化趋势的空间分布特征以及与1991~2020年气候态相比的全国平均的距平序列进行了分析。结果表明:1)1960~2020年,全国约60.3%站点的春霜冻日数呈现显著减少趋势[−3.5~0 d (10 a)−1],40%站点的终霜日呈显著提前趋势[−4.3~0 d (10 a)−1];全国平均的春霜冻日数呈−1.3 d (10 a)−1的显著减少趋势,终霜日则呈−1.7 d (10 a)−1的显著提前趋势。2)2021~2100年,预估我国大部分地区的春霜冻日数均呈现显著减少趋势[−1.6~0 d (10 a)−1],终霜日则呈显著提前趋势[−1.4~0 d (10 a)−1];全国平均的春霜冻日数呈现−0.8 d (10 a)−1的显著减少趋势,终霜日呈现−0.8 d (10 a)−1的显著提前趋势。
-
关键词:
- 春霜冻日数 /
- 终霜日 /
- CMIP6模式 /
- SSP2-4.5情景 /
- 趋势分析
Abstract: Spring frost is one of the most critical extreme events related with agriculture in northern temperate zone. In the context of climate change, research on the previous tendency and probable future change in the spring frost all over China can enhance people’s understanding, and it also has some reference value for adjustment of agricultural structure. Using a non-parametric method that is not sensitive to outliers and takes into account autocorrelation as the method of trend analysis, this study first analyzed the historical changes based on the meteorological observation data from 1960 to 2020. Then, based on the climate data simulated by 24 models in Coupled Model Intercomparison Project Phase 6 and the results of model evaluation, the future trend in spring frost from 2021 to 2100 was analyzed under the moderate radiative forcing scenario (SSP2-4.5), including the spatial distribution and national average anomalies compared with the 1991–2020 climatology. The main conclusions are summarized as follows: 1) From 1960 to 2020, the number of spring frost days of 60.3% stations across China showed a significantly decreasing trend [−3.5 – 0 d (10 a)−1], and the last frost date of 40% stations showed a significant advancing trend [−4.3 – 0 d (10 a)−1]. Moreover, national-averaged anomalies for the number of spring frost days during 1960–2020 in China showed a significantly decreasing trend [−1.3 d (10 a)−1], while those for the last frost date showed a significantly advancing trend [−1.7 d (10 a)−1]. 2) From 2021 to 2100, it is estimated that the number of spring frost days across China will decrease significantly [−1.6 – 0 d (10 a)−1], and the last frost day will advance significantly [−1.4 – 0 d (10 a)−1]. In addition, national-averaged anomalies for the number of spring frost days in China will show a significantly decreasing trend at a rate of −0.8 d (10 a)−1, and those for the last frost date will show a significantly advancing trend at a rate of −0.8 d (10 a)−1.-
Key words:
- Spring frost day /
- Last frost date /
- CMIP6 model /
- SSP2-4.5 scenario /
- Trend analysis
-
表 1 24个CMIP6模式的基本信息
Table 1. Basic information of the 24 CMIP6 models
模式 所属机构(国家) 分辨率(经向格点数×纬向格点数) ACCESS-CM2 CSIRO-ARC(澳大利亚) 192×144 ACCESS-ESM1-5 CSIRO(澳大利亚) 192×145 AWI-CM-1-1-MR AWI(德国) 384×192 BCC-CSM2-MR BCC(中国) 320×160 CanESM5 CCCMA(加拿大) 128×64 CNRM-CM6-1 CNRM-CERFACS(法国) 256×128 CNRM-ESM2-1 CNRM-CERFACS(法国) 256×128 EC-Earth3 EC-Earth(欧盟) 512×256 EC-Earth3-veg EC-Earth(欧盟) 512×256 FGOALS-g3 CAS(中国) 180×80 GFDL-CM4 GFDL(美国) 288×180 GFDL-ESM4 GFDL(美国) 288×180 HadGEM3-GC31-LL MOHC(英国) 192×144 INM-CM4-8 INM(俄罗斯) 180×120 INM-CM5-0 INM(俄罗斯) 180×120 IPSL-CM6A-LR IPSL(法国) 144×143 MIROC6 MIROC(日本) 256×128 MIROC-ES2L MIROC(日本) 256×128 MPI-ESM1-2-HR MPI-M(德国) 384×192 MPI-ESM1-2-LR MPI-M(德国) 192×96 MRI-ESM2-0 MRI(日本) 320×160 NESM3 NUIST(中国) 192×96 NorESM2-LM NorESM(挪威) 144×96 UKESM1-0-LL MOHC(英国) 192×144 -
[1] Alexander L V, Zhang X, Peterson T C, et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation [J]. J. Geophys. Res., 111(D5): D05109. doi: 10.1029/2005JD006290 [2] 敖雪, 翟晴飞, 崔妍, 等. 2020. 不同升温情景下中国东北地区平均气候和极端气候事件变化预估 [J]. 气象与环境学报, 36(5): 40−51. doi: 10.3969/j.issn.1673-503X.2020.05.006Ao Xue, Zhai Qingfei, Cui Yan, et al. 2020. Prediction of changes in mean and extreme climate events in Northeast China under different warming scenarios [J]. Journal of Meteorology and Environment (in Chinese), 36(5): 40−51. doi: 10.3969/j.issn.1673-503X.2020.05.006 [3] 陈翔, 林涛, 林非非, 等. 2020. 黄淮麦区小麦倒春寒危害机理及防控措施研究进展 [J]. 麦类作物学报, 40(2): 243−250. doi: 10.7606/j.issn.1009-1041.2020.02.14Chen Xiang, Lin Tao, Lin Feifei, et al. 2020. Research progress on damage mechanism and prevention and control measures of late spring coldness of wheat in Huanghuai region [J]. Journal of Triticeae Crops (in Chinese), 40(2): 243−250. doi: 10.7606/j.issn.1009-1041.2020.02.14 [4] 程瑛, 吴晶, 李红, 等. 2019. 1961~2017年甘肃省霜冻演变特征及其对农业的影响 [J]. 自然灾害学报, 28(6): 37−46. doi: 10.13577/j.jnd.2019.0605Cheng Ying, Wu Jing, Li Hong, et al. 2019. The variation characteristics of frost in Gansu Province from 1961 to 2017 and its impact on agriculture [J]. Journal of Natural Disasters (in Chinese), 28(6): 37−46. doi: 10.13577/j.jnd.2019.0605 [5] 褚晓菊, 陈英, 张锋. 2013. 陇南市一次重危害霜冻天气过程分析 [J]. 安徽农业科学, 41(16): 7245−7247. doi: 10.13989/j.cnki.0517-6611.2013.16.075Chu Xiaoju, Chen Ying, Zhang Feng. 2013. Analysis of a heavy damage frost weather process in Longnan city [J]. Journal of Anhui Agricultural Sciences (in Chinese), 41(16): 7245−7247. doi: 10.13989/j.cnki.0517-6611.2013.16.075 [6] Dai Junhu, Wang Huanjiong, Ge Quansheng. 2013. The decreasing spring frost risks during the flowering period for woody plants in temperate area of eastern China over past 50 years [J]. J. Geogr. Sci., 23(4): 641−652. doi: 10.1007/s11442-013-1034-6 [7] 丁善文, 王峰. 2020. 鲁中地区初霜日、终霜日及无霜期变化特征分析 [J]. 湖北农业科学, 59(6): 73−77. doi: 10.14088/j.cnki.issn0439-8114.2020.06.014Ding Shanwen, Wang Feng. 2020. The variation characteristics analysis of the initial frost day, final frost day and frost-free period in Luzhong area [J]. Hubei Agricultural Sciences (in Chinese), 59(6): 73−77. doi: 10.14088/j.cnki.issn0439-8114.2020.06.014 [8] 董丹宏, 黄刚. 2015. 中国最高、最低温度及日较差在海拔高度上变化的初步分析 [J]. 大气科学, 39(5): 1011−1024. doi: 10.3878/j.issn.1006-9895.1501.14291Dong Danhong, Huang Gang. 2015. Relationship between altitude and variation characteristics of the maximum temperature, minimum temperature, and diurnal temperature range in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(5): 1011−1024. doi: 10.3878/j.issn.1006-9895.1501.14291 [9] Dunn R J H, Alexander L V, Donat M G, et al. 2020. Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3 [J]. J. Geophys. Res., 125(16): e2019JD032263. doi: 10.1029/2019JD032263 [10] Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization [J]. Geosci. Model Dev., 9(5): 1937−1958. doi: 10.5194/gmd-9-1937-2016 [11] 房世波, 阳晶晶, 周广胜. 2011a. 30年来我国农业气象灾害变化趋势和分布特征 [J]. 自然灾害学报, 20(5): 69−73. doi: 10.13577/j.jnd.2011.0511Fang Shibo, Yang Jingjing, Zhou Guangsheng. 2011a. Change trend and distributive characteristics of agrometeorological disasters in China in recent 30 years [J]. Journal of Natural Disasters (in Chinese), 20(5): 69−73. doi: 10.13577/j.jnd.2011.0511 [12] 房世波, 韩国军, 张新时, 等. 2011b. 气候变化对农业生产的影响及其适应 [J]. 气象科技进展, 1(2): 15−19.Fang Shibo, Han Guojun, Zhang Xinshi, et al. 2011b. Climate change affects crop production and its adaptation [J]. Advances in Meteorological Science and Technology (in Chinese), 1(2): 15−19. [13] Grant P R. 2017. Evolution, climate change, and extreme events [J]. Science, 357(6350): 451−452. doi: 10.1126/science.aao2067 [14] 郭晓雷, 申双和, 张磊, 等. 2019. 宁夏枸杞种植区春霜冻发生的时空分布特征分析 [J]. 江苏农业科学, 47(6): 238−242. doi: 10.15889/j.issn.1002-1302.2019.06.051Guo Xiaolei, Shen Shuanghe, Zhang Lei, et al. 2019. Temporal and spatial distribution characteristics of spring frost occurrence in Ningxia wolfberry growing area [J]. Jiangsu Agricultural Sciences (in Chinese), 47(6): 238−242. doi: 10.15889/j.issn.1002-1302.2019.06.051 [15] 黄萌田, 周佰铨, 翟盘茂. 2020. 极端天气气候事件变化对荒漠化、土地退化和粮食安全的影响 [J]. 气候变化研究进展, 16(1): 17−27. doi: 10.12006/j.issn.1673-1719.2019.194Huang Mengtian, Zhou Baiquan, Zhai Panmao. 2020. Impacts of extreme weather and climate events on desertification, land degradation and food security [J]. Climate Change Research (in Chinese), 16(1): 17−27. doi: 10.12006/j.issn.1673-1719.2019.194 [16] 焦文慧, 张勃, 马彬, 等. 2021. 近58年华北地区初、终霜日及无霜期变化特征分析 [J]. 高原气象, 40(2): 343−352. doi: 10.7522/j.issn.1000-0534.2020.00085Jiao Wenhui, Zhang Bo, Ma Bin, et al. 2021. Variation characteristics of the date of first frost and last frost and the frost-free period in north China in recent 58 years [J]. Plateau Meteorology (in Chinese), 40(2): 343−352. doi: 10.7522/j.issn.1000-0534.2020.00085 [17] Karl T R, Nicholls N, Ghazi A. 1999. CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes workshop summary [M]//Karl T R, Nicholls N, Ghazi A. Weather and Climate Extremes: Changes, Variations and a Perspective from the Insurance Industry. Dordrecht: Springer, 3–7. doi: 10.1007/978-94-015-9265-9_2 [18] Lamichhane J R. 2021. Rising risks of late-spring frosts in a changing climate [J]. Nat. Climate Change, 11(7): 554−555. doi: 10.1038/s41558-021-01090-x [19] 李德萍, 张凯静, 张璐, 等. 2020. 青岛地区倒春寒时空特征及气象指标研究 [J]. 中国生态农业学报, 28(11): 1673−1681. doi: 10.13930/j.cnki.cjea.200560Li Deping, Zhang Kaijing, Zhang Lu, et al. 2020. Spatial and temporal characteristics and meteorological indexes of late spring coldness in Qingdao [J]. Chinese Journal of Eco-Agriculture (in Chinese), 28(11): 1673−1681. doi: 10.13930/j.cnki.cjea.200560 [20] 李想, 陈丽娟, 张培群. 2008. 1954~2005年长江以北地区初霜期变化趋势 [J]. 气候变化研究进展, 4(1): 21−25. doi: 10.3969/j.issn.1673-1719.2008.01.005Li Xiang, Chen Lijuan, Zhang Peiqun. 2008. Characteristics of interdecadal variations in first-frost date in northern China during 1954–2005 [J]. Advances in Climate Change Research (in Chinese), 4(1): 21−25. doi: 10.3969/j.issn.1673-1719.2008.01.005 [21] Li Zhen, Cao Lijuan, Zhu Yani, et al. 2016. Comparison of two homogenized datasets of daily maximum/mean/minimum temperature in China during 1960−2013 [J]. J. Meteor. Res., 30(1): 53−66. doi: 10.1007/s13351-016-5054-x [22] 刘杰, 许小峰, 罗慧. 2012. 极端天气气候事件影响我国农业经济产出的实证研究 [J]. 中国科学:地球科学, 42(7): 1076−1082. doi: 10.1360/zd-2012-42-7-1076Liu Jie, Xu Xiaofeng, Luo Hui. 2012. An empirical research on the impacts of extreme weather and climate events on agricultural economic output in China [J]. Scientia Sinica Terrae (in Chinese), 42(7): 1076−1082. doi: 10.1360/zd-2012-42-7-1076 [23] 罗新兰, 张彦, 孙忠富, 等. 2011. 黄淮平原冬小麦霜冻害时空分布特点的研究 [J]. 中国农学通报, 27(18): 45−50.Luo Xinlan, Zhang Yan, Sun Zhongfu, et al. 2011. Spatial and temporal distribution of winter wheat frost injury in Huanghuai plain [J]. Chinese Agricultural Science Bulletin (in Chinese), 27(18): 45−50. [24] Ma Qianqian, Huang Jianguo, Hänninen H, et al. 2019. Divergent trends in the risk of spring frost damage to trees in Europe with recent warming [J]. Glob. Change Biol., 25(1): 351−360. doi: 10.1111/gcb.14479 [25] 马尚谦, 张勃, 刘莉莉, 等. 2019. 甘肃省霜冻日期时空变化特征及影响因素 [J]. 高原气象, 38(2): 397−409. doi: 10.7522/j.issn.1000-0534.2018.00132Ma Shangqian, Zhang Bo, Liu Lili, et al. 2019. Analysis of the characteristics of temporal and spatial changes and influencing factors of frost season in Gansu Province [J]. Plateau Meteorology (in Chinese), 38(2): 397−409. doi: 10.7522/j.issn.1000-0534.2018.00132 [26] O’Neill B C, Tebaldi C, van Vuuren D P, et al. 2016. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 [J]. Geosci. Model Dev., 9(9): 3461−3482. doi: 10.5194/gmd-9-3461-2016 [27] Papagiannaki K, Lagouvardos K, Kotroni V, et al. 2014. Agricultural losses related to frost events: Use of the 850 hPa level temperature as an explanatory variable of the damage cost [J]. Nat. Hazards Earth Syst. Sci., 14(9): 2375−2386. doi: 10.5194/nhess-14-2375-2014 [28] Pfleiderer P, Menke I, Schleussner C F. 2019. Increasing risks of apple tree frost damage under climate change [J]. Climatic Change, 157(3): 515−525. doi: 10.1007/s10584-019-02570-y [29] Qian Cheng, Zhang Xuebin, Li Zhen. 2019. Linear trends in temperature extremes in China, with an emphasis on non-Gaussian and serially dependent characteristics [J]. Climate Dyn., 53(1): 533−550. doi: 10.1007/s00382-018-4600-x [30] 陶云, 段旭, 任菊章, 等. 2012. 云南极端霜冻气候事件的气候特征及环流背景分析 [J]. 灾害学, 27(2): 43−48. doi: 10.3969/j.issn.1000-811X.2012.02.009Tao Yun, Duan Xu, Ren Juzhang, et al. 2012. Climatic characteristics of the extreme frostbite climate events over Yunnan and analysis on its circulation background [J]. Journal of Catastrophology (in Chinese), 27(2): 43−48. doi: 10.3969/j.issn.1000-811X.2012.02.009 [31] Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram [J]. J. Geophys. Res., 106(D7): 7183−7192. doi: 10.1029/2000JD900719 [32] Ummenhofer C C, Meehl G A. 2017. Extreme weather and climate events with ecological relevance: A review [J]. Philos. Trans. Roy. Soc. B Biol. Sci., 372(1723): 20160135. doi: 10.1098/rstb.2016.0135 [33] Vitasse Y, Schneider L, Rixen C, et al. 2018. Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades [J]. Agric. For. Meteor., 248: 60−69. doi: 10.1016/j.agrformet.2017.09.005 [34] Wang Lei, Wu Zhengfang, He Hongshi, et al. 2017. Changes in start, end, and length of frost-free season across Northeast China [J]. Int. J. Climatol., 37(S1): 271−283. doi: 10.1002/joc.5002 [35] 王冀, 江志红, 丁裕国, 等. 2008. 21世纪中国极端气温指数变化情况预估 [J]. 资源科学, 30(7): 1084−1092. doi: 10.3321/j.issn:1007-7588.2008.07.018Wang Ji, Jiang Zhihong, Ding Yuguo, et al. 2008. Multi-model ensemble prediction of extreme temperature indices in China [J]. Resources Science, 30(7): 1084−1092. doi: 10.3321/j.issn:1007-7588.2008.07.018 [36] Wang X L, Swail V R. 2001. Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes [J]. J. Climate, 14(10): 2204−2221. doi:10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO;2 [37] Xiao Liujun, Liu Leilei, Asseng S, et al. 2018. Estimating spring frost and its impact on yield across winter wheat in China [J]. Agric. For. Meteor. , 260–261: 154–164. doi: 10.1016/j.agrformet.2018.06.006 [38] 徐金勤, 邱新法, 曾燕, 等. 2018. 浙江茶叶春霜冻害的气候变化特征分析 [J]. 江苏农业科学, 46(22): 101−105. doi: 10.15889/j.issn.1002-1302.2018.22.022Xu Jinqin, Qiu Xinfa, Zeng Yan, et al. 2018. Analysis of climate change characteristics of spring frost injury of tea in Zhejiang Province [J]. Jiangsu Agric. Sci. (in Chinese), 46(22): 101−105. doi: 10.15889/j.issn.1002-1302.2018.22.022 [39] 徐集云, 石英, 高学杰, 等. 2013. RegCM3对中国21世纪极端气候事件变化的高分辨率模拟 [J]. 科学通报, 58(8): 724–733. Xu Jiyun, Shi Ying, Gao Xuejie, et al. 2013. Projected changes in climate extremes over China in the 21st century from a high resolution regional climate model (RegCM3) [J]. Chinese Sci. Bull. , 58(12): 1443–1452. doi: 10.1007/s11434-012-5548-6 [40] 许艳, 王国复, 王盘兴. 2009. 近50 a中国霜期的变化特征分析 [J]. 气象科学, 29(4): 427−433. doi: 10.3969/j.issn.1009-0827.2009.04.001Xu Yan, Wang Guofu, Wang Panxing. 2009. Climatic change of frost in China in recent 50 a [J]. Journal of the Meteorological Sciences (in Chinese), 29(4): 427−433. doi: 10.3969/j.issn.1009-0827.2009.04.001 [41] 杨洋, 张磊, 陈豫英, 等. 2019. 贺兰山东麓酿酒葡萄种植区晚霜冻低温持续时间规律分析 [J]. 甘肃农业大学学报, 54(6): 149−154. doi: 10.13432/j.cnki.jgsau.2019.06.020Yang Yang, Zhang Lei, Chen Yuying, et al. 2019. Low temperature duration pattern in late frost period in wine grape growing area in eastern Helan mountain [J]. J. Gansu Agric. Univ. (in Chinese), 54(6): 149−154. doi: 10.13432/j.cnki.jgsau.2019.06.020 [42] 叶殿秀, 张勇. 2008. 1961~2007年我国霜冻变化特征 [J]. 应用气象学报, 19(6): 661−665. doi: 10.3969/j.issn.1001-7313.2008.06.004Ye Dianxiu, Zhang Yong. 2008. Characteristics of frost changes from 1961 to 2007 over China [J]. J. Appl. Meteor. Sci. (in Chinese), 19(6): 661−665. doi: 10.3969/j.issn.1001-7313.2008.06.004 [43] Yin Hong, Sun Ying. 2018. Detection of anthropogenic influence on fixed threshold indices of extreme temperature [J]. J. Climate, 31(16): 6341−6352. doi: 10.1175/JCLI-D-17-0853.1 [44] 尹红, 孙颖. 2019. 基于ETCCDI指数2017年中国极端温度和降水特征分析 [J]. 气候变化研究进展, 15(4): 363−373. doi: 10.12006/j.issn.1673-1719.2018.164Yin Hong, Sun Ying. 2019. Characteristics of extreme temperature and precipitation in China in 2017 based on ETCCDI indices [J]. Climate Change Research (in Chinese), 15(4): 363−373. doi: 10.12006/j.issn.1673-1719.2018.164 [45] 张嘉仪, 钱诚. 2020. 1960~2018年中国高温热浪的线性趋势分析方法与变化趋势 [J]. 气候与环境研究, 25(3): 225−239. doi: 10.3878/j.issn.1006-9585.2020.19134Zhang Jiayi, Qian Cheng. 2020. Linear trends in occurrence of high temperature and heat waves in China for the 1960–2018 period: Method and analysis results [J]. Climatic and Environmental Research (in Chinese), 25(3): 225−239. doi: 10.3878/j.issn.1006-9585.2020.19134 [46] 张磊, 杨洋, 张晓煜, 等. 2015. 近50年宁夏霜冻日数基本特征及变化趋势 [J]. 中国农学通报, 31(5): 214−219. doi: 10.11924/j.issn.1000-6850.2014-1724Zhang Lei, Yang Yang, Zhang Xiaoyu, et al. 2015. Characteristics and change trend of frost days in Ningxia in recent 50 years [J]. Chinese Agricultural Science Bulletin (in Chinese), 31(5): 214−219. doi: 10.11924/j.issn.1000-6850.2014-1724 [47] Zhang Meng, Yu Haipeng, Huang Jianping, et al. 2019. Comparison of extreme temperature response to 0.5 ℃ additional warming between dry and humid regions over East-central Asia [J]. Int. J. Climatol., 39(7): 3348−3364. doi: 10.1002/joc.6025 [48] 张鑫, 楼俊伟, 王勇, 等. 2021. 1961~2017年北疆初终霜日及霜期时空变化特征 [J]. 干旱区地理, 44(2): 308−315. doi: 10.12118/j.issn.1000-6060.2021.02.02Zhang Xin, Lou Junwei, Wang Yong, et al. 2021. Temporal and spatial variation characteristics of first and last frost day and frost period from 1961 to 2017 in northern Xinjiang [J]. Arid Land Geography (in Chinese), 44(2): 308−315. doi: 10.12118/j.issn.1000-6060.2021.02.02 [49] 张旭晖, 居为民, 蒯志敏, 等. 2013. 江苏春季霜冻气候变化特征及其未来可能变化趋势 [J]. 大气科学学报, 36(6): 666−673. doi: 10.13878/j.cnki.dqkxxb.2013.06.004Zhang Xuhui, Ju Weimin, Kuai Zhimin, et al. 2013. Historical variation and possible future trends of spring frost in Jiangsu Province [J]. Trans. Atmos. Sci. (in Chinese), 36(6): 666−673. doi: 10.13878/j.cnki.dqkxxb.2013.06.004 [50] Zhang Xuebin, Vincent L A, Hogg W D, et al. 2000. Temperature and precipitation trends in Canada during the 20th century [J]. Atmosphere—Ocean, 38(3): 395−429. doi: 10.1080/07055900.2000.9649654 [51] 张煦庭, 潘学标, 徐琳, 等. 2017. 中国温带地区不同界限温度下农业热量资源的时空演变 [J]. 资源科学, 39(11): 2104−2115. doi: 10.18402/resci.2017.11.09Zhang Xuting, Pan Xuebiao, Xu Lin, et al. 2017. Spatio-temporal variation of agricultural thermal resources at different critical temperatures in China’s temperate zone [J]. Resources Science (in Chinese), 39(11): 2104−2115. doi: 10.18402/resci.2017.11.09 [52] 赵俊芳, 郭建平, 马玉平, 等. 2010. 气候变化背景下我国农业热量资源的变化趋势及适应对策 [J]. 应用生态学报, 21(11): 2922−2930. doi: 10.13287/j.1001-9332.2010.0406Zhao Junfang, Guo Jianping, Ma Yuping, et al. 2010. Change trends of China agricultural thermal resources under climate change and related adaptation countermeasures [J]. Chinese Journal of Applied Ecology (in Chinese), 21(11): 2922−2930. doi: 10.13287/j.1001-9332.2010.0406 [53] Zhao Yimin, Qian Cheng, Zhang Wenjun, et al. 2021. Extreme temperature indices in Eurasia in a CMIP6 multi-model ensemble: Evaluation and projection [J]. Int. J. Climatol., 41(11): 5368−5385. doi: 10.1002/joc.7134 [54] 钟秀丽. 2003. 近20年来霜冻害的发生与防御研究进展 [J]. 中国农业气象, 24(1): 4−6. doi: 10.3969/j.issn.1000-6362.2003.01.002Zhong Xiuli. 2003. Occurrence and prevention of frost injury in recent two decades [J]. Chinese Journal of Agrometeorology (in Chinese), 24(1): 4−6. doi: 10.3969/j.issn.1000-6362.2003.01.002 [55] 周广胜, 何奇瑾, 汲玉河. 2016. 适应气候变化的国际行动和农业措施研究进展 [J]. 应用气象学报, 27(5): 527−533. doi: 10.11898/1001-7313.20160502Zhou Guangsheng, He Qijin, Ji Yuhe. 2016. Advances in the international action and agricultural measurements of adaptation to climate change [J]. Journal of Applied Meteorological Science (in Chinese), 27(5): 527−533. doi: 10.11898/1001-7313.20160502 [56] 周晓宇, 赵春雨, 崔妍, 等. 2017. 1961~2013年中国东北地区初终霜日及无霜期的气候变化特征 [J]. 自然资源学报, 32(3): 494−506. doi: 10.11849/zrzyxb.20160379Zhou Xiaoyu, Zhao Chunyu, Cui Yan, et al. 2017. Variation characteristics of the date of first frost and last frost and the frost-free period in the Northeast China during 1961–2013 [J]. Journal of Natural Resources, 32(3): 494−506. doi: 10.11849/zrzyxb.20160379 [57] 周雅清, 任国玉. 2010. 中国大陆1956~2008年极端气温事件变化特征分析 [J]. 气候与环境研究, 15(4): 405−417. doi: 10.3878/j.issn.1006-9585.2010.04.08Zhou Yaqing, Ren Guoyu. 2010. Variation characteristics of extreme temperature indices in mainland China during 1956−2008 [J]. Climatic and Environmental Research (in Chinese), 15(4): 405−417. doi: 10.3878/j.issn.1006-9585.2010.04.08 [58] 朱永宁, 冯东溥, 李红英, 等. 2020. 宁夏春霜冻期最低气温和霜冻日数时空变化特征 [J]. 干旱气象, 38(2): 256−262. doi: 10.11755/j.issn.1006-7639(2020)-02-0256Zhu Yongning, Feng Dongpu, Li Hongying, et al. 2020. Temporal and spatial change characteristics of the minimum temperature and frost days during the spring frost stage in Ningxia [J]. Journal of Arid Meteorology (in Chinese), 38(2): 256−262. doi: 10.11755/j.issn.1006-7639(2020)-02-0256 -