高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高空急流的维持对我国南方暴雪的影响

左群杰 张万诚 高守亭

左群杰, 张万诚, 高守亭. 2022. 高空急流的维持对我国南方暴雪的影响[J]. 气候与环境研究, 27(6): 679−687 doi: 10.3878/j.issn.1006-9585.2021.21165
引用本文: 左群杰, 张万诚, 高守亭. 2022. 高空急流的维持对我国南方暴雪的影响[J]. 气候与环境研究, 27(6): 679−687 doi: 10.3878/j.issn.1006-9585.2021.21165
ZUO Qunjie, ZHANG Wancheng, GAO Shouting. 2022. Influence of the Maintenance of Upper Jet Stream on Snowstorms in the Southern Part of China [J]. Climatic and Environmental Research (in Chinese), 27 (6): 679−687 doi: 10.3878/j.issn.1006-9585.2021.21165
Citation: ZUO Qunjie, ZHANG Wancheng, GAO Shouting. 2022. Influence of the Maintenance of Upper Jet Stream on Snowstorms in the Southern Part of China [J]. Climatic and Environmental Research (in Chinese), 27 (6): 679−687 doi: 10.3878/j.issn.1006-9585.2021.21165

高空急流的维持对我国南方暴雪的影响

doi: 10.3878/j.issn.1006-9585.2021.21165
基金项目: 重庆市技术创新与应用发展专项cstc2019jscx-tjsbX0007,国家自然科学基金项目41875056、41765003
详细信息
    作者简介:

    左群杰,男,1982 年出生,副研究员,主要从事波流相互作用、大尺度天气动力学等方面的研究。E-mail: zqj@mail.iap.ac.cn

    通讯作者:

    张万诚,E-mail: wanzhangcheng@163.com

  • 中图分类号: P442

Influence of the Maintenance of Upper Jet Stream on Snowstorms in the Southern Part of China

Funds: Special Key Project of Chongqing Technology Innovation and Application Development (Grant cstc2019jscx-tjsbX0007), National Natural Science Foundation of China (Grants 41875056 and 41765003)
  • 摘要: 利用欧洲中期预报中心再分析数据(ERA- Interim)分析了2014年2月9日、2015年12月5日、2016年1月20日和2018年1月24日高空急流扰动动能对暴雪的影响。在暴雪发生的过程中,通常伴有高空急流的存在。高空急流一方面维持自身的存在,另一方面其引起的垂直运动有利于暴雪的发展。垂直运动的上升支有两个方面的作用,一个是将低层暖湿空气输送到高层,为暴雪提供源源不断的水汽,另一个是将急流中的扰动动能向下输送到低层冷暖气流交汇区域,该区域也是水平风切变较大的区域,为该区域提供扰动动能,进一步促进暴雪的发生和发展。
  • 图  1  (a)2014年2月9日06:00、(b)2015年12月5日06:00、(c)2016年1月20日06:00、(d)2018年1月25日06:00 850 hPa风场(矢量,单位矢量20 m s−1)、扰动温度场(彩色)和位势场(实线,间隔5×102 m2 s−2)。黑色块表示青藏高原的位置

    Figure  1.  Wind (vector, units: 20 m s−1), eddy temperature (color), geopotential (solid line, interval: 5×102 m2 s−2) of 850 hPa at (a) 0600UTC 9 Feb 2014, (b) 0600UTC 5 Dec 2015, (c) 0600UTC 20 Jan 2016, and (d) 0600UTC 25 Jan 2018. The black block indicates the location of the Tibetan Plateau

    图  2  (a)2014年2月9日06:00、(b)2015年12月5日06:00、(c)2016年1月20日06:00、(d)2018年1月25日06:00 300 hPa风速(彩色)。黑粗线表示青藏高原的位置

    Figure  2.  Wind speeds (colored) of 300 hPa at (a) 0600UTC 9 Feb 2014, (b) 0600UTC 5 Dec 2015, (c) 0600UTC 20 Jan 2016, and (d) 0600UTC 25 Jan 2018. The bold black line indicates the location of the Tibetan Plateau. The bold black line indicates the location of the Tibetan Plateau

    图  3  (a)2014年2月9日06:00 115°E、(b)2015年12月5日06:00 120°E、(c)2016年1月20日06:00 115°E、(d)2018年1月25日06:00 120°E水平风速(彩色)、垂直运动(实线为上升运动,虚线为下沉运动,间隔:0.1 Pa s−1)、垂直环流(矢量,v单位:10 m s−1ω单位:0.1 Pa s−1)高度—纬度剖面

    Figure  3.  Pressure–latitude cross sections of horizontal wind speeds (colored), vertical velocity (solid/dotted lines denote ascending/descending motion, interval: 0.1 Pa s−1), and vertical circulation (vector, v units: 10 m s−1, ω units: 0.1 Pa s−1) at (a) 115°E 0600UTC 9 Feb 2014, (b) 120°E 0600UTC 5 Dec 2015, (c) 115°E 0600UTC 20 Jan 2016, and (d) 120°E 0600UTC 25 Jan 2018

    图  4  (a)2014年2月9日06:00、(b)2015年12月5日06:00、(c)2016年1月20日06:00、(d)2018年1月25日06:00 300 hPa扰动位势通量散度(黑实线,粗黑实线为正值,细黑实线为负,等值线间隔5×10−3 m2 s−3)、扰动温度(彩色)、风速(红实线,≥50 m s−1,间隔:10 m s−1)和扰动位势通量矢量(箭头)。加粗黑实线表示青藏高原所在位置

    Figure  4.  Eddy geopotential flux divergence (black lines, thick/thin black lines denote positive/negative values, interval: 5×10−3 m2 s−3), eddy temperature (colored), wind speeds (red lines, ≥50 m s−1, interval: 10 m s−1), and eddy geopotential fluxes (vectors) at 300 hPa at (a) 0600UTC 9 Feb 2014, (b) 0600UTC 5 Dec 2015, (c) 0600UTC 20 Jan 2016, and (d) 0600UTC 25 Jan 2018. The bold black line indicates the location of the Tibetan Plateau

    图  5  (a)2014年2月9日06:00 115°E、(b)2015年12月5日06:00 120°E、(c)2016年1月20日06:00 115°E、(d)2018年1月25日06:00 120°E水平风速(彩色)、扰动位势通量散度(实线为正,虚线为负,间隔:5×10−3 m2 s−3)、扰动位势通量矢量(南北方向单位:104 m3 s−3,垂直方向单位:102 Pa m2 s−3)高度—纬度剖面

    Figure  5.  Pressure–latitude cross sections of horizontal wind speeds (colored), eddy geopotential flux divergence (solid/dotted lines denote positive/negative, interval: 5×10−3 m2 s−3), and eddy geopotential flux vector (horizontal units: 104 m3 s−3, vertical units: 102 Pa m2 s−3) at (a) 115°E 0600UTC 9 Feb 2014, (b) 120°E 0600UTC 5 Dec 2015, (c) 115°E 0600UTC 20 Jan 2016, and (d) 120°E 0600UTC 25 Jan 2018

    图  6  (a)2014年2月9日06:00、(b)2015年12月5日06:00、(c)2016年1月20日06:00、(d)2018年1月25日06:00 300 hPa扰动有效位能转换(黑实线,粗黑实线为正值,细黑实线为负,等值线间隔5×10−3 m2 s−3)、扰动温度(彩色)、风速(红实线,≥50 m s−1,间隔:10 m s−1)。加粗黑实线表示青藏高原所在位置

    Figure  6.  Eddy available potential energy conversion (black lines, thick/thin black lines denote positive/negative values, interval: 5×10−3 m2 s−3), eddy temperature (color), wind speeds (red lines, ≥50 m s−1, interval: 10 m s−1) at 300 hPa at (a) 0600UTC 9 Feb 2014, (b) 0600UTC 5 Dec 2015, (c) 0600UTC 20 Jan 2016, and (d) 0600UTC 25 Jan 2018. The bold black line indicates the location of the Tibetan Plateau

  • [1] Bao Q, Yang J, Liu Y M, et al. 2010. Roles of anomalous Tibetan Plateau warming on the severe 2008 winter storm in central−southern China [J]. Mon. Wea. Rev., 138(6): 2375−2384. doi: 10.1175/2009MWR2950.1
    [2] Bennetts D A, Hoskins B J. 1979. Conditional symmetric instability—A possible explanation for frontal rainbands [J]. Quart. J. Roy. Meteor. Soc., 105(446): 945−962. doi: 10.1002/qj.49710544615
    [3] Bosart L F. 1981. The Presidents’ Day snowstorm of 18−19 February 1979: A subsynoptic-scale event [J]. Mon. Wea. Rev., 109(7): 1542−1566. doi:10.1175/1520-0493(1981)109<1542:TPDSOF>2.0.CO;2
    [4] Braham R R Jr. 1983. The Midwest snow storm of 8−11 December 1977 [J]. Mon. Wea. Rev., 111(2): 253−272. doi:10.1175/1520-0493(1983)111<0253:TMSSOD>2.0.CO;2
    [5] Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system [J]. Quart. J. Roy. Meteor. Soc., 137(656): 553−597. doi: 10.1002/qj.828
    [6] Emanuel K A. 1979. Inertial instability and mesoscale convective systems. Part I: Linear theory of inertial instability in rotating viscous fluids [J]. J. Atmos. Sci., 36(12): 2425−2449. doi:10.1175/1520-0469(1979)036<2425:IIAMCS>2.0.CO;2
    [7] Frederik S, Bosart L F. 1985. Mesoscale structure in the Megalopolitan snowstorm of 11−12 February 1983. Part I: Frontogenetical forcing and symmetric instability [J]. J. Atmos. Sci., 42(10): 1050−1061. doi:10.1175/1520-0469(1985)042<1050:MSITMS>2.0.CO;2
    [8] 顾佳佳, 武威. 2015. 2014年2月4~7日河南暴雪过程的环流特征及其持续原因 [J]. 暴雨灾害, 34(2): 117−125.

    Gu Jiajia, Wu Wei. 2015. The circulation features and sustaining mechanism of a snowstorm event occurred in Henan from February 4 to 7 in 2014 [J]. Torrential Rain and Disasters (in Chinese), 34(2): 117−125.
    [9] 胡中明, 周伟灿. 2005. 我国东北地区暴雪形成机理的个例研究 [J]. 南京气象学院学报, 28(5): 679−684. doi: 10.13878/j.cnki.dqkxxb.2005.05.015

    Hu Zhongming, Zhou Weican. 2005. Case study on the genesis of a snowstorm over the northeast region in China [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 28(5): 679−684. doi: 10.13878/j.cnki.dqkxxb.2005.05.015
    [10] 黄海波, 徐海容. 2007. 新疆一次秋季暴雪天气的诊断分析 [J]. 高原气象, 26(3): 624−629. doi: 10.3321/j.issn:1000-0534.2007.03.026

    Huang Haibo, Xu Hairong. 2007. Diagnostic analysis on a snowstorm event occurred of Xinjiang in fall [J]. Plateau Meteorology (in Chinese), 26(3): 624−629. doi: 10.3321/j.issn:1000-0534.2007.03.026
    [11] 李津, 赵思雄, 孙建华. 2017. 一次华北破纪录暴雪成因的分析研究 [J]. 气候与环境研究, 22(6): 683−698. doi: 10.3878/j.issn.1006-9585.2017.16121

    Li Jin, Zhao Sixiong, Sun Jianhua. 2017. Analysis of a record heavy snowfall event in North China [J]. Climatic and Environmental Research (in Chinese), 22(6): 683−698. doi: 10.3878/j.issn.1006-9585.2017.16121
    [12] Liao Z J, Hang Y C. 2013. Concurrent variation between the East Asian subtropical jet and polar front jet during persistent snowstorm period in 2008 winter over southern China [J]. J. Geophys. Res. Atmos., 118(12): 6360−6373. doi: 10.1002/jgrd.50558
    [13] 刘宁微, 齐琳琳, 韩江文. 2009. 北上低涡引发辽宁历史罕见暴雪天气过程的分析 [J]. 大气科学, 33(2): 275−284. doi: 10.3878/j.issn.1006-9895.2009.02.07

    Liu Ningwei, Qi Linlin, Han Jiangwen. 2009. The Analyses of an unusual snowstorm caused by the northbound vortex over Liaoning Province in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(2): 275−284. doi: 10.3878/j.issn.1006-9895.2009.02.07
    [14] 刘正新, 田惠平, 赵俊荣, 等. 2007. 新疆天山中部初秋罕见大暴雪成因分析 [J]. 沙漠与绿洲气象, 1(5): 21−24. doi: 10.3969/j.issn.1002-0799.2007.05.006

    Liu Zhengxin, Tian Huiping, Zhao Junrong, et al. 2007. A snowstorm origin analysis in early autumn at middle part of Xinjiang Tianshan Mountains [J]. Desert and Oasis Meteorology (in Chinese), 1(5): 21−24. doi: 10.3969/j.issn.1002-0799.2007.05.006
    [15] Marwitz J D, Toth J. 1993. A case study of heavy snowfall in Oklahoma [J]. Mon. Wea. Rev., 121(3): 648−660. doi:10.1175/1520-0493(1993)121<0648:ACSOHS>2.0.CO;2
    [16] Murakami S. 2011. Atmospheric local energetics and energy interactions between mean and eddy fields. Part I: Theory [J]. J. Atmos. Sci., 68(4): 760−768. doi: 10.1175/2010JAS3664.1
    [17] Ninomiya K. 1991. Polar low development over the east coast of the Asian continent on 9−11 December 1985 [J]. J. Meteor. Soc. Japan, 69(6): 669−685. doi: 10.2151/jmsj1965.69.6_669
    [18] 秦华锋, 金荣花. 2008. “0703”东北暴雪成因的数值模拟研究 [J]. 气象, 34(4): 30−38. doi: 10.7519/j.issn.1000-0526.2008.04.004

    Qin Huafeng, Jin Ronghua. 2008. Numerical simulation study of the cause of snowstorm process in northeast of China on March 3−5 of 2007 [J]. Meteor. Mon. (in Chinese), 34(4): 30−38. doi: 10.7519/j.issn.1000-0526.2008.04.004
    [19] Sanders F. 1986. Frontogenesis and symmetric stability in a major New England snowstorm [J]. Mon. Wea. Rev., 114(10): 1847−1862. doi:10.1175/1520-0493(1986)114<1847:FASSIA>2.0.CO;2
    [20] 王文辉, 徐祥德. 1979. 锡盟大雪过程和“77.10”暴雪分析 [J]. 气象学报, 37(3): 80−86. doi: 10.11676/qxxb1979.031

    Wang Wenhui, Xu Xiangde. 1979. The heavy snow process in district Xilingele and the analysis of “77.10” snowstorm [J]. Acta Meteor. Sinica (in Chinese), 37(3): 80−86. doi: 10.11676/qxxb1979.031
    [21] Wen M, Yang S, Kumar A, et al. 2009. An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008 [J]. Mon. Wea. Rev., 137(3): 1111−1131. doi: 10.1175/2008MWR2638.1
    [22] 张元春, 孙建华, 傅慎明. 2012. 冬季一次引发华北暴雪的低涡涡度分析 [J]. 高原气象, 31(2): 387−399.

    Zhang Yuanchun, Sun Jianhua, Fu Shenming. 2012. Analysis of vorticity during vortex producing snowstorm in North China in winter [J]. Plateau Meteor. (in Chinese), 31(2): 387−399.
    [23] 周芳, 王晓东, 毛连海. 2021. 一次高空急流背景下江西暴雪过程分析 [J]. 沙漠与绿洲气象, 15(1): 36−45. doi: 10.12057/j.issn.1002-0799.2021.01.005

    Zhou Fang, Wang Xiaodong, Mao Lianhai. 2021. Analysis of a snowstorm influenced by upper troposphere jet steam in Jiangxi Province [J]. Desert and Oasis Meteorology (in Chinese), 15(1): 36−45. doi: 10.12057/j.issn.1002-0799.2021.01.005
    [24] 庄晓翠, 李博渊, 陈春艳. 2016. 新疆北部一次暖区与冷锋暴雪并存的天气过程分析 [J]. 气候与环境研究, 21(1): 17−28. doi: 10.3878/j.issn.1006-9585.2015.15024

    Zhuang Xiaocui, Li Boyuan, Chen Chunyan. 2016. Analysis of a snowstorm weather process in a coexisting warm area and cold front in northern Xinjiang [J]. Climatic and Environmental Research (in Chinese), 21(1): 17−28. doi: 10.3878/j.issn.1006-9585.2015.15024
    [25] 左群杰, 高守亭, 孙效功. 2017. 2008年初东亚高空急流变化的可能原因及其对我国南方低温雨雪冰冻灾害的影响 [J]. 气候与环境研究, 22(4): 381−391. doi: 10.3878/j.issn.1006-9585.2016.16072

    Zuo Qunjie, Gao Shouting, Sun Xiaogong. 2017. An effect study of the East Asian jet stream on the freezing rain and snowstorm event over southern China in early 2008 and possible reasons for the jet stream variation [J]. Climatic and Environmental Research (in Chinese), 22(4): 381−391. doi: 10.3878/j.issn.1006-9585.2016.16072
  • 加载中
图(6)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  34
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-04
  • 录用日期:  2021-12-30
  • 网络出版日期:  2022-01-08
  • 刊出日期:  2022-12-12

目录

    /

    返回文章
    返回