Verification and Analysis of the Impact of Cold Wave Weather Process on the Numerical Prediction Skills of Wind/Photovoltaic Power Resource Elements
-
摘要: 基于ERA-5再分析资料和NCEP的GFS预报系统的120 h预报资料,对华东地区2020年12月至2021年3月期间9次寒潮过程中数值模式的近地面风速和向下净短波辐射通量预报技巧进行了检验,检验结果表明:1)GFS预报系统在提前1~4 d均能准确预报出寒潮过程(降温幅度和最低温度),平均预报命中率均在80%以上。2)在寒潮过程中,近地面风速会明显增强,虽然0~2级风速预报评分明显降低,但对3~5级和6级以上的风速预报评分(Threat Score, TS)反而较一般天气过程高;而向下净短波辐射通量预报相对误差要比一般天气过程偏大,尤其在寒潮爆发日最大。3)在寒潮过程中预报技巧具有明显日变化特征,0~2级风速预报技巧下午最低,尤其在寒潮最强日最明显;3~5级风速预报技巧在18:00(协调世界时)左右最低,在寒潮最强日夜间都很低。而向下净短波辐射通量预报下午以后预报误差显著增大,尤其在寒潮爆发日误差最大。4)在寒潮过程中,预报技巧随着预报时效的延长而降低,其中24 h预报TS评分较高,误差较小。72 h评分较低,误差较大。Abstract: Based on the reanalysis data of ERA-5 and the 120-h prediction data of Global Forecast System (GFS), which is the NCEP prediction system, this paper examines the prediction skills of near-surface wind speed and net downward short-wave radiation flux of the numerical model during nine cold waves in East China from December 2020 to March 2021. The following test results are obtained: 1) The GFS prediction system can accurately predict the cold wave process (cooling range and minimum temperature) 1–4 days in advance, with an average prediction accuracy > 80%. 2) The near-surface wind speed increases significantly during the cold wave. Even though the Threat Score (TS) of the wind speed of grades 0–2 is significantly low, the TS score of the wind speed of grades 3–5 and >6 is higher than the general weather process. The relative error in the prediction of the net downward short-wave radiation flux is larger than the general weather processes, particularly on the day of the cold wave outbreak. 3) The prediction skills exhibit significant diurnal variation, during the cold wave. The prediction skill of the wind speed of grades 0–2 is the lowest in the afternoon, particularly on the strongest day of the cold wave. The TS score of the wind speed of grades 3–5 is generally the lowest at around 1800 LST and is extremely low at night on the strongest day of the cold wave. After the afternoon, particularly on the day of the cold wave outbreak, the error in the prediction of the net downward short-wave radiation flux increases significantly. 4) The prediction skills decrease and the prediction time increases during the cold wave. The 24-h prediction has the highest TS score and the minimum error, while the 72-h prediction has the lowest TS score and the maximum error.
-
图 2 2020~2021年寒潮过程(a–c)爆发日和(d–f)最强日、(g–h)一般过程0~2级(第一行)、3~5级(第二行)以及6级以上(第三行)3个风速段的风速TS评分(24 h:24 h预报,48 h:48 h预报,72 h:72 h预报,下同)
Figure 2. TSs of (a–c) outbreak day and (d–f) the strongest day in cold wave process and (g–h) general weather process during 2020−2021 at three wind-speed segments of grades 0–2 (the first row), 3–5 (the second row), and >6 (the third row) (24 h: 24-h prediction, 48 h: 48-h prediction, and 72 h: 72-h prediction, the same below)
图 3 2020~2021年(a–c)“1230”和(d–f)“0301”两次寒潮过程最强日0~2级(第一行)、3~5级(第二行)以及6级以上(第三行)3个风速段的风速TS评分
Figure 3. TSs of the two strongest days in cold wave process of (a–c) “1230” and (d–f) “0301” during 2020−2021 at three wind-speed segments of grades 0–2 (the first row), 3–5 (the second row) and > 6 (the third row)
图 5 2020~2021年两次寒潮最强日(黑线为“1230”,灰线为“0301”)向下净短波辐射通量相对误差(“1230”寒潮过程3个时效的预报完全重叠)
Figure 5. Relative error in the downward net short-wave radiation flux of the two strongest days of cold wave process during 2020−2021 (black line: “1230”, grey line: “0301” ) (the effective predictions of the “1230” cold wave process completely overlap three times)
表 1 风速预报两分类列联表
Table 1. Contingency table of dimorphic distribution for wind speed forecast
预测事件 观测事件 发生 不发生 发生 NA NB 不发生 NC 表 2 2020~2021年9次冷空气过程达到区域寒潮标准的格点数以及模式预报准确率
Table 2. Grid points of nine cold-air processes reaching regional cold wave standards and model prediction accuracy during 2020−2021
日期 达到寒潮标
准的格点数预报准确率 超前4天 超前3天 超前2天 超前1天 12月13~14日 761 91% 88% 84% 58% 12月29~30日 841 100% 100% 100% 82% 1月7~8日 838 87% 89% 87% 91% 1月15~16日 692 99% 99% 97% 85% 2月7~8日 519 33% 37% 89% 94% 2月15~17日 386 74% 87% 92% 90% 2月22~23日 270 100% 100% 100% 100% 3月1~2日 451 77% 47% 51% 59% 3月6~7日 323 68% 76% 89% 88% 平均 81% 80% 88% 83% -
[1] Ayotte K W, Davy R J, Coppin P A. 2001. A simple temporal and spatial analysis of flow in complex terrain in the context of wind energy modelling [J]. Bound.-Layer Meteor., 98(2): 275−295. doi: 10.1023/A:1026583021740 [2] 陈春艳, 黄海波. 2016. WRF模式辐射方案对极端低温天气预报的影响 [J]. 干旱区研究, 33(4): 718−723. doi: 10.13866/j.azr.2016.04.05Chen Chunyan, Huang Haibo. 2016. Influence of different radiation parameterization schemes of WRF model on predicting extreme low temperature events [J]. Arid Zone Research (in Chinese), 33(4): 718−723. doi: 10.13866/j.azr.2016.04.05 [3] 董全, 代刊, 陶亦为, 等. 2017. 基于ECMWF集合预报的极端天气预报产品应用和检验 [J]. 气象, 43(9): 1095−1109. doi: 10.7519/j.issn.1000-0526.2017.09.007Dong Quan, Dai Kan, Tao Yiwei, et al. 2017. Application and verification of extreme weather forecast products of ECMWF ensemble prediction system [J]. Meteorological Monthly (in Chinese), 43(9): 1095−1109. doi: 10.7519/j.issn.1000-0526.2017.09.007 [4] Harper K, Uccellini L W, Kalnay E, et al. 2007. 50th anniversary of operational numerical weather prediction [J]. Bull. Amer. Meteor. Soc., 88(5): 639−650. doi: 10.1175/BAMS-88-5-639 [5] Hueging H, Haas R, Born K, et al. 2013. Regional changes in wind energy potential over Europe using regional climate model ensemble projections [J]. Journal of Applied Meteorology and Climatology, 52(4): 903−917. doi: 10.1175/JAMC-D-12-086.1 [6] 贾丽红, 汤浩, 王江, 等. 2009. GRAPES不同参数化方案对新疆“4.18”寒潮降雪的敏感试验 [J]. 安徽农业科学, 37(17): 8078−8080, 8159. doi: 10.3969/j.issn.0517-6611.2009.17.109Jia Lihong, Tang Hao, Wang Jiang, et al. 2009. Sensitive experiment of various parameterization schemes in GRAPES model on "4.18" snowstorm weather in Xinjiang [J]. Journal of Anhui Agricultural Sciences (in Chinese), 37(17): 8078−8080, 8159. doi: 10.3969/j.issn.0517-6611.2009.17.109 [7] 李芬, 陈正洪, 成驰, 等. 2011. 太阳能光伏发电量预报方法的发展 [J]. 气候变化研究进展, 7(2): 136−142. doi: 10.3969/j.issn.1673-1719.2011.02.010Li Fen, Chen Zhenghong, Cheng Chi, et al. 2011. Review on forecast methods for photovoltaic power generation [J]. Advances in Climate Change Research (in Chinese), 7(2): 136−142. doi: 10.3969/j.issn.1673-1719.2011.02.010 [8] 李光明, 廖华, 李景天, 等. 2011. 并网光伏发电系统发电量预测方法的探讨 [J]. 云南师范大学学报, 31(2): 33−38, 64. doi: 10.3969/j.issn.1007-9793.2011.02.006Li Guangming, Liao Hua, Li Jingtian, et al. 2011. Discussion on the method of grid-connected PV power system generation forecasting [J]. Journal of Yunnan Normal University (in Chinese), 31(2): 33−38, 64. doi: 10.3969/j.issn.1007-9793.2011.02.006 [9] 卢静, 翟海青, 刘纯, 等. 2010. 光伏发电功率预测统计方法研究 [J]. 华东电力, 38(4): 563−567.Lu Jing, Zhai Haiqing, Liu Chun, et al. 2010. Study on statistical method for predicting photovoltaic generation power [J]. East China Electric Power (in Chinese), 38(4): 563−567. [10] 马金玉, 罗勇, 申彦波, 等. 2011. 太阳能预报方法及其应用和问题 [J]. 资源科学, 33(5): 829−837.Ma Jinyu, Luo Yong, Shen Yanbo, et al. 2011. A review on methods of solar energy forecasting and its application [J]. Resources Science (in Chinese), 33(5): 829−837. [11] 马玉芬, 杜娟, 于晓晶, 等. 2016. GTS同化对DOGRAFS预报新疆区域一次特大暴雪的影响 [J]. 沙漠与绿洲气象, 10(6): 24−30. doi: 10.3969/j.issn.1002-0799.2016.06.004Ma Yufen, Du Juan, Yu Xiaojing, et al. 2016. Impact of GTS assimilation upon DOGRAFS in prediction of a streeme snowstorm in Xinjiang [J]. Desert and Oasis Meteorology (in Chinese), 10(6): 24−30. doi: 10.3969/j.issn.1002-0799.2016.06.004 [12] Manwell J F, Rogers A L, McGowan J G, et al. 2002. An offshore wind resource assessment study for New England [J]. Renewable Energy, 27(2): 175−187. doi: 10.1016/S0960-1481(01)00183-5 [13] 苗春生, 赵瑜, 王坚红. 2010. 080125南方低温雨雪冰冻天气持续降水的数值模拟 [J]. 大气科学报, 33(1): 25−33. doi: 10.3969/j.issn.1674-7097.2010.01.004Miao Chunsheng, Zhao Yu, Wang Jianhong. 2010. Numerical simulation of 080125 cold air, freezing rain and snow in Southern China [J]. Transactions of Atmospheric Sciences (in Chinese), 33(1): 25−33. doi: 10.3969/j.issn.1674-7097.2010.01.004 [14] 穆海振, 徐家良, 柯晓新, 等. 2006. 高分辨率数值模式在风能资源评估中的应用初探 [J]. 应用气象学报, 17(2): 152−159. doi: 10.3969/j.issn.1001-7313.2006.02.004Mu Haizhen, Xu Jialiang, Ke Xiaoxin, et al. 2006. Application of high resolution numerical model to wind energy potential assessment [J]. Journal of Applied Meteorological Science (in Chinese), 17(2): 152−159. doi: 10.3969/j.issn.1001-7313.2006.02.004 [15] 祁莉, 马琼, 张文君. 2017. GRAPES模式对2011/2012年冬季寒潮天气过程预报能力的检验 [J]. 大气科学学报, 40(6): 791−802. doi: 10.13878/j.cnki.dqkxxb.20150104001Qi Li, Ma Qiong, Zhang Wenjun. 2017. Verification of forecasting capability of cold wave process in the winter of 2011/2012 with GRAPES [J]. Transactions of Atmospheric Sciences (in Chinese), 40(6): 791−802. doi: 10.13878/j.cnki.dqkxxb.20150104001 [16] 曲巧娜, 范苏丹, 车军辉, 等. 2016. 数值模式对2016年1月世纪寒潮过程的预报能力检验 [J]. 山东气象, 36(3): 42−48. doi: 10.19513/j.cnki.issn1005-0582.2016.03.007Qu Qiaona, Fan Sudan, Che Junhui, et al. 2016. The prediction ability of numerical model for the cold wave process in January 2016 [J]. Journal of Shandong Meteorology (in Chinese), 36(3): 42−48. doi: 10.19513/j.cnki.issn1005-0582.2016.03.007 [17] 唐沛, 袁静, 陆鸿彬, 等. 2019. 遂宁市寒潮客观预报方法及效果检验分析 [J]. 高原山地气象研究, 39(4): 53−58. doi: 10.3969/j.issn.1674-2184.2019.04.008Tang Pei, Yuan Jing, Lu Hongbin, et al. 2019. Objective forecasting method of cold wave and effect examination of Suining [J]. Plateau and Mountain Meteorology Research (in Chinese), 39(4): 53−58. doi: 10.3969/j.issn.1674-2184.2019.04.008 [18] Tobin I, Vautard R, Balog I, et al. 2015. Assessing climate change impacts on European wind energy from ensembles high-resolution climate projections [J]. Climatic Change, 128(1): 99−112. doi: 10.1007/s10584-014-1291-0 [19] 王毅, 周庆亮, 代刊, 等. 2019. 全球数据处理和预报系统发展及展望 [J]. 气象科技进展, 9(2): 6−10. doi: 10.3969/j.issn.2095-1973.2019.02.001Wang Yi, Zhou Qingliang, Dai Kan, et al. 2019. Development and outlook of global data-processing and forecasting system [J]. Advances in Meteorological Science and Technology (in Chinese), 9(2): 6−10. doi: 10.3969/j.issn.2095-1973.2019.02.001 [20] 吴国旸, 肖洋, 翁莎莎. 2005. 风电场短期风速预测探讨 [J]. 吉林电力, (6): 21−24. doi: 10.3969/j.issn.1009-5306.2005.06.007Wu Guoyang, Xiao Yang, Weng Shasha. 2005. Discussion about short-term forecast of wind speed on wind farm [J]. Jilin Electric Power (in Chinese), (6): 21−24. doi: 10.3969/j.issn.1009-5306.2005.06.007 [21] 夏晓玲, 尚媛媛, 郑奕. 2019. 贵州省数值预报风速产品检验及订正 [J]. 中低纬山地气象, 43(6): 30−36. doi: 10.3969/j.issn.1003-6598.2019.06.005Xia Xiaoling, Shang Yuanyuan, Zheng Yi. 2019. Verification and revision of numerical models for wind speed forecast in Guizhou Province [J]. Mid-Low Latitude Mountain Meteorology (in Chinese), 43(6): 30−36. doi: 10.3969/j.issn.1003-6598.2019.06.005 [22] 徐晶晶, 胡非, 肖子牛, 等. 2013. 风能模式预报的相似误差订正 [J]. 应用气象学报, 24(6): 731−740. doi: 10.3969/j.issn.1001-7313.2013.06.010Xu Jingjing, Hu Fei, Xiao Ziniu, et al. 2013. Analog bias correction of numerical model on wind power prediction [J]. Journal of Applied Meteorological Science (in Chinese), 24(6): 731−740. doi: 10.3969/j.issn.1001-7313.2013.06.010 [23] 杨秀媛, 肖洋, 陈树勇. 2005. 风电场风速和发电功率预测研究 [J]. 中国电机工程学报, 25(11): 1−5. doi: 10.3321/j.issn:0258-8013.2005.11.001Yang Xiuyuan, Xiao Yang, Chen Shuyong. 2005. Wind speed and generated power forecasting in wind farm [J]. Proceedings of the CSEE (in Chinese), 25(11): 1−5. doi: 10.3321/j.issn:0258-8013.2005.11.001 [24] 于超. 2010. 2010年6~8月T639、ECMWF及日本模式中期预报性能检验 [J]. 气象, 36(11): 104−108. doi: 10.7519/j.issn.1000-0526.2010.11.016Yu Chao. 2010. The performance verification of the medium-range forecasting for T639, ECMWF and Japan models from June to August 2010 [J]. Meteorological Monthly (in Chinese), 36(11): 104−108. doi: 10.7519/j.issn.1000-0526.2010.11.016 [25] 张秉祥, 王立荣, 杨荣珍, 等. 2010. 数值预报产品对寒潮天气过程的预报能力检验 [J]. 干旱气象, 28(1): 96−101. doi: 10.3969/j.issn.1006-7639.2010.01.017Zhang Bingxiang, Wang Lirong, Yang Rongzhen, et al. 2010. Forecasting capability test of cold wave process by numerical weather prediction products [J]. Journal of Arid Meteorology (in Chinese), 28(1): 96−101. doi: 10.3969/j.issn.1006-7639.2010.01.017 [26] 中国气象局. 2017. 冷空气等级. GB/T 20484-2017 [S]. 北京: 气象出版社, 1−8.China Meteorological Administration. 2017. Grade of cold air. GB/T 20484-2017 [S]. Beijing: China Meteorological Press, 1−8. [27] 中国气象局. 2017. 地面气象观测规范风向和风速. GB/T 35227-2017 [S]. 北京: 气象出版社, 1−16.China Meteorological Administration. 2017. Specifications for surface meteorological observation—Wind direction and wind speed. GB/T 35227-2017 [S]. Beijing: China Meteorological Press, 1−16. [28] 中国气象局. 2019. 天气预报检验风预报. GB/T37302-2019 [S]. 北京: 气象出版社, 1−12.China Meteorological Administration. 2019. Weather forecast verification—Wind forecast. GB/T37302-2019 [S]. Beijing: China Meteorological Press, 1−12. [29] 朱雯娜, 黄海波. 2012. 资料同化对一次寒潮数值预报效果的评估 [J]. 沙漠与绿洲气象, 6(3): 50−53. doi: 10.3969/j.issn.1002-0799.2012.03.011Zhu Wenna, Huang Haibo. 2012. Effect of numerical prediction with data assimilation of a cold wave [J]. Desert and Oasis Meteorology (in Chinese), 6(3): 50−53. doi: 10.3969/j.issn.1002-0799.2012.03.011 -