Analysis of the Causes of a Heavy Pollution Fog/Haze Weather in Qingdao City in January 2018
-
摘要: 利用中国国家地面站逐小时气象观测资料、中国环境监测总站空气质量逐时监测数据、ECMWF 0.125°(纬度)×0.125°(经度)再分析资料及青岛市八关山自动站常规要素逐小时数据,对2018年1月15~22日青岛市一次重度污染雾—霾天气过程的特征及其影响因子进行分析。结果表明:PM10为首要污染物,污染过程中青岛市48 h 输入污染源前期主要为北方干冷气团与江淮湿空气在山东半岛北部汇聚堆积,后期则主要包括山东省内局地大气污染物排放。雾—霾期间,500 hPa中高纬地区受乌拉尔山阻塞高压和中西伯利亚冷低压控制,宽广的东亚横槽稳定维持,青岛上空以平直西风气流为主,地面等压线稀疏,风速小;随着横槽转竖,纬向型环流转为经向型,冷空气大举南下,风速急增,降雪发生,雾—霾迅速消散。在静稳的大气环流背景下,当近地逆温层内弱风或持续吹陆风,对流层低层上升和下沉运动较弱,水汽条件较好时,有利于雾—霾维持。综合分析雾—霾各阶段PM2.5浓度和相对湿度与能见度间的关系发现,霾阶段两因子影响力相当;雾阶段能见度主要受相对湿度的影响;静稳条件下PM2.5浓度累积增加是影响雾、霾混合阶段能见度的主要因子。Abstract: The pollutant trajectory, atmospheric circulation background, and meteorological factors of a heavy air pollution fog/haze event in Qingdao from 15 January to 22 January 2018, were analyzed using routine weather observation, air quality monitoring data, and ECMWF reanalysis data. The results indicate that during the early stages of pollution in Qingdao, the primary sources were the convergence and accumulation of dry and cold air from Mongolia and wet air from the Yangtze–Huaihe River basin. In the late stage, the major sources were the local air pollutants in Shandong Province, with PM10 being the primary pollutant. During the pollution process, controlled by the ural blocking high and cold low pressure in central Siberia, the East Asian transverse trough remained stable over the mid-high latitude area at 500 hPa. Over Qingdao, westerly airflow was dominant, with low wind speeds near the ground. As the transverse trough turned vertical, the zonal circulation changed to meridional, the cold air moved southward, the wind speed increased drastically, and the fog/haze dissipated rapidly. Under stable atmospheric circulation, when the surface layer had a weak wind or continuous land breeze, the ascending and descending motion of the air in the lower troposphere was weak, and the water vapor condition was favorable for the maintenance of fog/haze. Thus, by analyzing the relationship among relative humidity, PM2.5 concentration, and visibility at various stages of the process, it was observed that during the haze stage, the influence of both factors was comparable; moreover, during the fog stage, visibility was primarily affected by relative humidity, and accumulation and increase of PM2.5 concentration under static and steady conditions were the primary factors affecting visibility during the fog and haze mixing stage.
-
Key words:
- Fog/haze /
- Backward trajectory /
- Circulation /
- Meteorological factor
-
图 4 2018年1月20日08:00(a)500 hPa和(b)700 hPa位势高度场(等值线,单位:gpm)、温度场(填色,单位:°C)和风场(矢量场,单位:m/s)分布。绿点表示青岛市区
Figure 4. Distribution of the geopotential height field (contour, units: gpm), temperature field (colored, units:°C), and wind field (vector, units: m/s) at (a) 500 hPa and (b) 700 hPa at 0800 LST 20 January 2018. The green dots represent the Qingdao urban areas
图 5 2018年1月20日08:00(a)850 hPa温度场(单位:°C)和风场(单位:m/s)、(b)海平面气压场(单位:hPa)和风场(单位:m/s)分布。绿点表示青岛市区
Figure 5. Distribution of (a) the temperature field (°C) and wind field (m/s) at 850 hPa, (b) sea level pressure field (hPa), and surface wind field (m/s) at 0800 LST 20 January 2018. The green dots represent the Qingdao urban area
-
[1] 曹伟华, 梁旭东, 李青春. 2013. 北京一次持续性雾霾过程的阶段性特征及影响因子分析 [J]. 气象学报, 71(5): 940−951. doi: 10.11676/qxxb2013.072Cao Weihua, Liang Xudong, Li Qingchun. 2013. A study of the stageful characteristics and influencing factors of a long-lasting fog/haze event in Beijing [J]. Acta Meteor. Sinica (in Chinese), 71(5): 940−951. doi: 10.11676/qxxb2013.072 [2] 柴艺淳. 2015. 大气气溶胶和气象条件对京津冀地区区域性雾霾的影响 [D]. 中国海洋大学硕士学位论文. Chai Yichun. 2015. The impact of atmospheric aerosols and meteorological conditions on regional haze–fog weather in Beijing–Tianjin–Hebei district [D]. M. S. thesis (in Chinese), Ocean University of China. [3] 丁一汇, 柳艳菊. 2014. 近50年我国雾和霾的长期变化特征及其与大气湿度的关系 [J]. 中国科学: 地球科学, 44(1): 37–48. Ding Yihui, Liu Yanju. 2014. Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity [J]. Sci. China Earth Sci. , 57(1): 36–46. doi: 10.1007/s11430-013-4792-1 [4] 高歌. 2008. 1961-2005年中国霾日气候特征及变化分析 [J]. 地理学报, 63(7): 761−768. doi: 10.3321/j.issn:0375-5444.2008.07.010Gao Ge. 2008. The climatic characteristics and change of haze days over China during 1961–2005 [J]. Acta Geograph. Sinica (in Chinese), 63(7): 761−768. doi: 10.3321/j.issn:0375-5444.2008.07.010 [5] Gao Y, Zhang M, Liu Z, et al. 2015. Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog–haze event over the North China Plain [J]. Atmos. Chem. Phys., 15(8): 4279−4295. doi: 10.5194/acp-15-4279-2015 [6] Jia M W, Zhao T L, Cheng X H, et al. 2017. Inverse relations of PM2.5 and O3 in air compound pollution between cold and hot seasons over an urban area of East China [J]. Atmosphere, 8(3): 59. doi: 10.3390/atmos8030059 [7] 刘应辰. 2006. 青岛市区污染气体浓度变化及其与天气系统的关系 [D]. 中国海洋大学硕士学位论文. Liu Yingchen. 2006. The characteristics of the trace gases of Qingdao and the relationship between the concentrations of the trace gases with the weather systems [D]. M. S. thesis (in Chinese), Ocean University of China. [8] 苗爱梅, 李苗, 王洪霞. 2014. 一次持续性雾霾天气过程的阶段性特征及影响因子分析 [J]. 干旱气象, 32(6): 947−953. doi: 10.11755/j.issn.1006-7639(2014)-06-0947Miao Aimei, Li Miao, Wang Hongxia. 2014. Characteristics in stages of a long-lasting fog and haze weather and influence factors analysis [J]. J. Arid Meteor. (in Chinese), 32(6): 947−953. doi: 10.11755/j.issn.1006-7639(2014)-06-0947 [9] Quan J, Zhang Q, He H, et al. 2011. Analysis of the formation of fog and haze in North China Plain (NCP) [J]. Atmos. Chem. Phys., 11(15): 8205−8214. doi: 10.5194/acp-11-8205-2011 [10] 史军, 崔林丽, 贺千山, 等. 2010. 华东雾和霾日数的变化特征及成因分析 [J]. 地理学报, 65(5): 533−542. doi: 10.11821/xb201005003Shi Jun, Cui Linli, He Qianshan, et al. 2010. The changes and causes of fog and haze days in eastern China [J]. Acta Geograph. Sinica (in Chinese), 65(5): 533−542. doi: 10.11821/xb201005003 [11] 魏玉香, 童尧青, 银燕, 等. 2009. 南京SO2、NO2和PM10变化特征及其与气象条件的关系 [J]. 大气科学学报, 32(3): 451−457. doi: 10.3969/j.issn.1674-7097.2009.03.013Wei Yuxiang, Tong Yaoqing, Yin Yan, et al. 2009. The variety of main air pollutants concentration and its relationship with meteorological condition in Nanjing City [J]. Trans. Atmos. Sci. (in Chinese), 32(3): 451−457. doi: 10.3969/j.issn.1674-7097.2009.03.013 [12] 张恒德, 饶晓琴, 乔林. 2011. 一次华东地区大范围持续雾过程的诊断分析 [J]. 高原气象, 30(5): 1255−1265.Zhang Hengde, Rao Xiaoqin, Qiao Lin. 2011. Diagnostic and analysis of consecutive fog process on large-scale in East China region [J]. Plateau Meteor. (in Chinese), 30(5): 1255−1265. [13] 张莉, 巩在武, 顾伟宗, 等. 2015. 山东省雾霾变化特征及一次持续性雾霾过程的分析 [J]. 中国海洋大学学报, 45(11):10–14, : 35. doi: 10.16441/j.cnki.hdxb.20150018Zhang Li, Gong Zaiwu, Gu Weizong, et al. 2015. The characteristics of haze and fog in Shandong Province and analysis of a durative haze and fog [J]. Period. Ocean Univ. China, 45(11):10–14 (in Chinese), : 35. doi: 10.16441/j.cnki.hdxb.20150018 [14] 张人禾, 李强, 张若楠. 2014. 2013年1月中国东部持续性强雾霾天气产生的气象条件分析 [J]. 中国科学:地球科学, 44(1):27–36. Zhang Renhe, Li Qiang, Zhang Ruonan. 2014. Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013[J]. Sci. China Earth Sci., 57(1): 26−35. doi: 10.1007/s11430-013-4774-3 [15] 张小曳, 孙俊英, 王亚强, 等. 2013. 我国雾—霾成因及其治理的思考 [J]. 科学通报, 58(13): 1178−1187. doi: 10.1360/972013-150Zhang Xiaoye, Sun Junying, Wang Yaqiang, et al. 2013. Factors contributing to haze and fog in China [J]. Chinese Sci. Bull. (in Chinese), 58(13): 1178−1187. doi: 10.1360/972013-150 [16] 赵桂香, 杜莉, 卫丽萍, 等. 2011. 一次持续性区域雾霾天气的综合分析 [J]. 干旱区研究, 28(5): 871−878. doi: 10.13866/j.azr.2011.05.021Zhao Guixiang, Du Li, Wei Liping, et al. 2011. Comprehensive analysis on a durative regional haze and fog [J]. Arid Zone Res. (in Chinese), 28(5): 871−878. doi: 10.13866/j.azr.2011.05.021 -