An Ensemble Projection of Extreme Climate Events and Related Risk Exposures in the 21st Century in the Yangtze River Economic Zone Using High-Resolution (6.25 km) Downscaling Datasets
-
摘要: 使用基于动力降尺度和统计降尺度方法得到的RCP4.5情景下的6.25 km高分辨率联合降尺度预估数据集,对长江经济带未来极端气候事件及其造成的风险展开评估和预估。结果表明:降尺度预估数据能较好的再现各极端温度指数和大部分极端降水指数的空间分布,但一些极端降水指数的偏差略大。未来长江经济带极端热事件将增加,冷事件减少;长江中游东部和下游的极端降水事件将增加,上游地区东南部发生干旱事件的可能性大。长江经济带以及上游、中游和下游3个分区的高温事件和强降水事件的国内生产总值(GDP)暴露度都将增加;人口暴露度呈先增后降的变化趋势。高温事件的GDP暴露度的分布因子和非线性因子的贡献同样重要,人口暴露度中分布因子的影响更大;强降水事件的暴露度主要取决于GDP或人口分布因子。Abstract: The 6.25 km high-resolution downscaling projection datasets under the RCP4.5 scenario based on a combined dynamical and statistical downscaling method are used to evaluate and project the future extreme climatic events and the associated risks in the Yangtze River Economic Zone (YREZ). The results show that the datasets can well reproduce the spatial distribution of all temperature extremes and most precipitation extremes, providing a reliable forecasting capability. However, Slightly larger deviations in some extreme precipitation indices The heat events will increase, while the cold events will decrease substantially in the YREZ. Extreme precipitation is projected to increase in the lower and eastern middle reaches and decrease in the east and south upper reaches. The gross domestic product (GDP) exposure to heat events and heavy rainfall showed an increasing trend in the 21st century in YREZ, most significantly in the lower reaches. Meanwhile, population exposure increased and then decreased in the 21st century. The contribution of the distribution factor and the non-linear factor are equally important for GDP exposure to high events, while the distribution factor having a greater impact in population exposure. The GDP/population exposure to heavy rainfall mainly depends on its distribution factor.
-
Key words:
- Extreme climate events /
- Exposures /
- Yangtze River economic zone
-
图 3 2008~2017年降尺度结果对极端指数的模拟误差(相对于观测):(a)HD(单位:d);(b)FD(单位:d);(c)TXx(单位:°C);(d)TNn(单位:°C);(e)RX5day(单位:mm);(f)R20mm(单位:d);(g)SDII(单位:mm/d);(h)PRCPTOT(单位:mm)。AVE为YREZ偏差的平均值,黑色十字标记表示在95%置信水平下误差是显著的
Figure 3. Biases of the downscaled dataset over the YREZ for extremes indices during 2008–2017 (relative to observation): (a) HD (units: d); (b) FD (units: d); (c) TXx (units:°C); (d) TNn (units:°C); (e) RX5day (units: mm); (f) R20mm (units: d); (g) SDII (units: mm/d); (h) PRCPTOT (units: mm). The biases averaged over the YREZ are listed as AVE in each panel. The black cross indicates the bias that is significant at the 95% confidence level
图 4 21世纪3个时段2026~2045年(第一列)、2046~2065年(第二列)、2080~2099年(第三列)长江经济带极端温度指数的变化(相对于1986~2005年):(a–c)HT;(d–f)FD;(g–i)TXx;(j–l)TNn
Figure 4. Projected changes in extreme temperature indices (relative to 1986–2005) during 2026–2045 (the first column), 2046–2065 (the second column), and 2080–2099 (the third column) across the YREZ: (a–c) HT; (d–f) FD; (g–i) TXx; (j–l) TNn
图 5 21世纪3个时段2026~2045年(第一列)、2046~2065年(第二列)、2080~2099年(第三列)长江经济带极端降水指数的变化(相对于1986~2005年):(a-c)RX5day(单位:mm);(d-f)R20mm(单位:d);(g-i)SDII(单位:mm/d);(j-l)PRCPTOT(单位:mm)
Figure 5. Projected changes in extreme precipitation indices (relative to 1986–2005) during 2026–2045 (the first column), 2046–2065 (the second column), and 2080–2099 (the third column) across the YREZ: (a–c) RX5day (units: mm); (d–f) R20mm (units: d); (g–i) SDI (units: mm/d); (j–l) PRCPTOT (units: mm)
图 6 21世纪长江经济带及长江上游、中游和下游9年平滑的(a)GDP(单位:109元)和(b)人口(POP,单位:103人)时间序列(不同颜色表示不同分区)
Figure 6. Nine-year smoothed time series of changes in (a) GDP (units: 109 CNY) and (b) population (POP, units: 103 people) over the YREZ and its upper, middle, and lower reaches during the 21st century. The different colored lines indicate different regions
图 7 参照时段(1986~2005年)和21世纪3个时段的长江经济带高温事件(a–d)GDP暴露度(单位:108元)和(e–h)人口暴露度(单位:100人)的空间分布:(a、e)1986~2005年;(b、f)2026~2045年;(c、g)2046~2065年;(d、h)2080~2099年
Figure 7. Present period (1986–2005) and projected changes during three periods of the 21st century in (a–d) GDP exposures (units: 108 CNY), (e–h) population exposures (units: 100) to heat events across the YREZ: (a, e) 1986–2005; (b, f)2026–2045; (c, g) 2046–2065; (d, h) 2080–2099
图 8 同图7,但为强降水事件GDP和人口暴露度
Figure 8. Same as in Fig. 7 but for GDP exposure and population exposure to heavy rainfall events
图 9 长江经济带和长江上游、中游和下游(a、b)高温事件和(c、d)强降水事件暴露度在参照时段(1986~2005)和21世纪的不确定性分析(柱状图表示多模式集合结果,黑色线条表示5个模式的不确定性范围):(a、c)GDP暴露度(单位:108元);(b、d)人口暴露度(单位:100人)
Figure 9. Present period (1986–2005) and projected changes during the 21st century in exposures to (a, b) heat events and (c, d) heavy rainfall over the YREZ and the upper, middle, and lower reaches of Yangtze River (the black bars indicate the uncertainty ranges of the five simulations): (a, c) GDP exposure (units: 108 CNY); (b, d) population exposure (units: 100 people)
表 1 极端事件指数定义
Table 1. Definition of extreme climate indices
指数 定义 单位 日最高气温最高值(TXx) 每年日最高气温的最大值 °C 日最低气温最低值(TNn) 每年日最低气温的最小值 °C 高温日数(HD) 每年日最高气温大于35°C的全部天数 d 霜冻日数(FD) 每年日最低气温小于0°C的全部天数 d 5日最大降水量(RX5day) 每年最大的连续5 d降水量 mm 湿日总降水量(PRCPTOT) 每年所有湿日(日降水量大于1 mm)降水量的总和 mm 大雨日数(R20mm) 每年日降水量大于等于20 mm的天数 d 降水强度(SDII) 年湿日总降水量与湿日日数的比值 mm/d 表 2 21世纪长江经济带及其上游、中游和下游的极端温度指数的变化(21世纪近期/中期/末期,相对于1986~2005年)
Table 2. Projected changes in the extreme temperature indices averaged over the YREZ and its upper, middle, and lower reaches in the 21st century (near term/ mid-term/long term; relative to 1986-2005)
21世纪近期/中期/末期极端温度指数的变化 HT/d FD/d TXx/°C TNn/°C 长江经济带上游 3.2/5.5/8.0 −8.7/−12.2/−15.9 1.2/2.0/2.6 1.3/1.8/2.5 长江经济带中游 11.6/17.6/22.6 −8.1/−11.5/−15.8 1.1/1.8/2.5 1.1/1.4/2.2 长江经济带下游 8.8/14.2/18.3 −8.4/−13.1/−17.1 1.2/1.9/2.5 1.2/1.8/2.5 长江经济带 6.5/10.4/13.9 −8.5/−12.2/−16.1 1.2/2.0/2.6 1.2/1.7/2.4 表 3 21世纪长江经济带及其上游、中游和下游的极端降水指数的变化(21世纪近期/中期/末期,相对于1986~2005年)
Table 3. Projected changes in the extreme precipitation indices averaged over the YREZ and its upper, middle, and lower reaches and in the 21st century (near term/ mid-term/long term; relative to 1986-2005)
21世纪近期/中期/末期极端降水指数的变化 RX5day/mm R20mm/d SDII/mm d−1 PRCPTOT/mm 长江上游 6.0/7.1/7.0 0.5/0.4/0.3 0.3/0.2/0.3 24.1/23.2/13.3 长江中游 8.3/9.2/16.0 0.3/0.6/1.0 0.2/0.4/0.6 19.4/35.9/56.9 长江下游 14.0/23.4/30.9 0.6/0.5/1.2 0.4/0.6/0.9 48.4/53.5/92.6 长江经济带 8.0/10.6/13.7 0.5/0.5/0.7 0.3/0.3/0.5 27.1/32.0/39.3 表 4 21世纪长江经济带及其上游、中游和下游高温事件GDP暴露度影响因子的相对贡献
Table 4. Relative contributions to the change in exposures to heat events over the YREZ and its upper, middle, and lower reaches during the 21st century
21世纪近期/中期/末期高温事件GDP暴露度相对贡献 GDP分布因子 GDP数量因子 气候因子 非线性因子 长江经济带上游 59.2%/50.6%/40.0% 8.4%/5.6%/6.3% 3.1%/2.7%/3.5% 29.3%/41.1%/50.1% 长江经济带中游 45.6%/42.2%/33.6% 16.8%/11.4%/14.2% 3.5%/2.8%/3.4% 34.1%/43.6%/48.9% 长江经济带下游 46.8%/41.9%/33.8% 17.7%/12.2%/13.9% 3.3%/2.7%/3.2% 32.3%/43.2%/43.2% 长江经济带 52.0%/46.0%/37.8% 12.2%/8.2%/9.7% 3.3%/2.8%/3.4% 32.5%/43.0%/49.2% 注:黑体表示贡献度占主导地位的影响因子,下同。 表 5 21世纪长江经济带和长江上游、中游和下游高温事件人口暴露度影响因子的相对贡献
Table 5. Relative contributions to the change in population exposures to heat events over the YREZ and its the upper, middle, and lower reaches during the 21st century
21世纪近期/中期/末期高温事件人口暴露度相对贡献 人口分布因子 人口数量因子 气候因子 非线性因子 长江经济带上游 80.6%/68.0%/74.4% 0.5%/−0.6%/−1.5% −11.7%/−6.8%/−23.6% 30.6%/39.4%/50.8% 长江经济带中游 72.0%/62.3%/74.9% 1.2%/−0.7%/−2.6% −13.1%/−11.4%/−42.0% 39.9%/49.7%/69.7% 长江经济带下游 63.6%/49.8%/48.6% 1.3%/0.4%/−1.2% 1.5%/8.6%/4.7% 33.6%/41.2%/47.9% 长江经济带 68.6%/55.2%/58.0% 0.8%/-0.2%/−1.3% −4.4%/2.0%/−10.1% 35.0%/43.1%/53.4% 21世纪近期/中期/末期强降水事件GDP暴露度相对贡献 GDP分布因子 GDP数量因子 气候因子 非线性因子 长江经济带上游 73.0%/78.9%/72.2% 21.8%/17.0%/24.9% 0.5%/0.3%/0.2% 4.7%/3.8%/2.8% 长江经济带中游 65.6%/72.0%/59.5% 32.1%/25.8%/33.0% 0.2%/0.2%/0.5% 2.2%/2.0%/7.0% 长江经济带下游 66.0%/67.9%/59.2% 27.8%/21.2%/26.6% 0.6%/0.6%/0.9% 5.6%/10.3%/13.4% 长江经济带 74.6%/76.6%/68.8% 20.3%/15.3%/19.7% 0.5%/0.5%/0.7% 4.60%/7.6%/10.8% 21世纪近期/中期/末期强降水事件人口暴露度相对贡献 人口分布因子 人口数量因子 气候因子 非线性因子 长江经济带上游 99.0%/99.5%/96.2% 0.3%/0.1%/4.4% −3.9%/−2.7%/−2.0% 4.7%/3.1%/1.4% 长江经济带中游 98.5%/98.9%/96.5% 0.5%/−0.0%/4.2% −1.0%/−0.1%/−7.7% 2.0%/1.3%/6.9% 长江经济带下游 96.7%/94.3%/93.6% 1.1%/0.2%/1.2% −2.8%/−4.0%/−9.4% 5.0%/9.5%/14.6% 长江经济带 97.8%/95.9%/94.8% 0.4%/−0.0%/2.1% −2.5%/−3.1%/−8.1% 4.3%/7.2%/11.2% -
[1] Chen Huopo, Sun Jianqi. 2013. Projected change in East Asian summer monsoon precipitation under RCP scenario [J]. Meteor. Atmos. Phys., 121(1): 55−77. doi: 10.1007/s00703-013-0257-5 [2] Gao Xuejie, Shi Ying, Han Zhenyu, et al. 2017. Performance of RegCM4 over major river basins in China [J]. Adv. Atmos. Sci., 34(4): 441−455. doi: 10.1007/s00376-016-6179-7 [3] Gao Xuejie, Shi Ying, Song Ruiyan, et al. 2008. Reduction of future monsoon precipitation over China: Comparison between a high resolution RCM simulation and the driving GCM [J]. Meteor. Atmos. Phys., 100(1): 73−86. doi: 10.1007/s00703-008-0296-5 [4] Gao Xuejie, Shi Ying, Zhang Dongfeng, et al. 2012. Uncertainties in monsoon precipitation projections over China: Results from two high-resolution RCM simulations [J]. Climate Res., 52: 213−226. doi: 10.3354/cr01084 [5] Geiger T, Daisuke M, Frieler K, et al. 2017. Spatially-explicit Gross Cell Product (GCP) time series: Past observations (1850–2000) harmonized with future projections according to the Shared Socioeconomic Pathways (2010–2100) [DB/OL]. GFZ Data Services. https://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:2740907. [6] Han Zhenyu, Shi Ying, Wu Jia, et al. 2019. Combined dynamical and statistical downscaling for high-resolution projections of multiple climate variables in the Beijing–Tianjin–Hebei region of China [J]. J. Appl. Meteor. Climatol., 58(11): 2387−2403. doi: 10.1175/JAMC-D-19-0050.1 [7] Harrington L J, Otto F E L. 2018. Changing population dynamics and uneven temperature emergence combine to exacerbate regional exposure to heat extremes under 1.5°C and 2°C of warming [J]. Environ. Res. Lett., 13(3): 034011. doi: 10.1088/1748-9326/aaaa99 [8] IPCC. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation [M]//Field C B, Barros V, Stocker T F, et al. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 582pp. [9] IPCC. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 1132pp. [10] IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press. [11] Ji Zhenming, Kang Shichang. 2015. Evaluation of extreme climate events using a regional climate model for China [J]. Int. J. Climatol., 35(6): 888−902. doi: 10.1002/joc.4024 [12] 江晓菲, 李伟, 游庆龙. 2018. 中国未来极端气温变化的概率预估及其不确定性 [J]. 气候变化研究进展, 14(3): 228−236. doi: 10.12006/j.issn.1673-1719.2017.202Jiang Xiaofei, Li Wei, You Qinglong. 2018. Probability projection and uncertainties of the temperature extreme indices change over China [J]. Climate Change Research (in Chinese), 14(3): 228−236. doi: 10.12006/j.issn.1673-1719.2017.202 [13] Jones B, O’Neill B C. 2016. Spatially explicit global population scenarios consistent with the shared socioeconomic pathways [J]. Environ. Res. Lett., 11(8): 084003. doi: 10.1088/1748-9326/11/8/084003 [14] Jones B, O’Neill B C, McDaniel L, et al. 2015. Future population exposure to US heat extremes [J]. Nat. Climate Change, 5(7): 652−655. doi: 10.1038/nclimate2631 [15] Jones B, Tebaldi C, O’Neill B C, et al. 2018. Avoiding population exposure to heat-related extremes: Demographic change vs climate change [J]. Climatic Change, 146(3–4): 423–437. doi: 10.1007/s10584-017-2133-7 [16] Kim M K, Kim S, Kim J, et al. 2016. Statistical downscaling for daily precipitation in Korea using combined PRISM, RCM, and quantile mapping: Part 1, methodology and evaluation in historical simulation [J]. Asia-Pacific J. Atmos. Sci., 52(2): 79−89. doi: 10.1007/s13143-016-0010-3 [17] Kriegler E, Edmonds J, Hallegatte S, et al. 2014. A new scenario framework for climate change research: The concept of shared climate policy assumptions [J]. Climatic Change, 122(3): 401−414. doi: 10.1007/s10584-013-0971-5 [18] Li Chunxiang, Tian Qinhua, Yu Rong, et al. 2018. Attribution of extreme precipitation in the lower reaches of the Yangtze River during May 2016 [J]. Environ. Res. Lett., 13(1): 014015. doi: 10.1088/1748-9326/aa9691 [19] 李柔珂, 韩振宇, 徐影, 等. 2020. 高分辨率区域气候变化降尺度数据对京津冀地区高温GDP和人口暴露度的集合预估 [J]. 气候变化研究进展, 16(4): 491−504. doi: 10.12006/j.issn.1673-1719.2019.111Li Rouke, Han Zhenyu, Xu Ying, et al. 2020. An ensemble projection of GDP and population exposure to high temperature events over Jing–Jin–Ji district based on high resolution combined dynamical and statistical downscaling datasets [J]. Climate Change Research (in Chinese), 16(4): 491−504. doi: 10.12006/j.issn.1673-1719.2019.111 [20] Li Wei, Jiang Zhihong, Xu Jianjun, et al. 2016. Extreme precipitation indices over China in CMIP5 models. Part II: Probabilistic projection [J]. J. Climate, 29(24): 8989−9004. doi: 10.1175/JCLI-D-16-0377.1 [21] 刘俸霞, 王艳君, 赵晶, 等. 2017. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征 [J]. 长江流域资源与环境, 26(5): 778−788. doi: 10.11870/cjlyzyyhj201705016Liu Fengxia, Wang Yanjun, Zhao Jing, et al. 2017. Variations of the exterme precipitation under the global warming of 1.5℃ and 2.0℃ in the mid-lower reaches of the Yangtze River basin [J]. Resources and Environment in the Yangtze Basin (in Chinese), 26(5): 778−788. doi: 10.11870/cjlyzyyhj201705016 [22] Murakami D, Yamagata Y. 2016. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling [J]. Sustainability, 11(7): 2106. doi: 10.3390/su11072106 [23] Niu Xiaorui, Wang Shuyu, Tang Jianping, et al. 2015. Multimodel ensemble projection of precipitation in eastern China under A1B emission scenario [J]. J Geophys Res:Atmos, 120(19): 9965−9980. doi: 10.1002/2015JD023853 [24] O’Neill B C, Kriegler E, Ebi K L, et al. 2017. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century [J]. Glob. Environ. Change, 42: 169−180. doi: 10.1016/j.gloenvcha.2015.01.004 [25] Qi Heshuai, Wen Xin, Wang Zhenni, et al. 2019. Spatiotemporal variability in future extreme temperatures and rainfall in the Yangtze River basin: Update using bias-corrected climate projections fitted by stationary and nonstationary model [J]. J. Hydrol. Eng., 24(11): 05019026. doi: 10.1061/(ASCE)HE.1943-5584.0001847 [26] Shi Ying, Wang Guiling, Gao Xuejie. 2018. Role of resolution in regional climate change projections over China [J]. Climate Dyn. , 51(5–6): 2375–2396. doi: 10.1007/s00382-017-4018-x [27] Sillmann J, Kharin V V, Zhang Xuebin, et al. 2013. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate [J]. J. Geophys. Res. :Atmos., 118(4): 1716−1733. doi: 10.1002/jgrd.50203 [28] Tian Di, Guo Yan, Dong Wenjie. 2015. Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models [J]. Adv. Atmos. Sci., 32(4): 487−496. doi: 10.1007/s00376-014-4102-7 [29] Wang Lin, Chen Wen. 2014. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China [J]. Int. J. Climatol., 34(6): 2059−2078. doi: 10.1002/joc.3822 [30] Wang Xiuquan, Huang Guohe, Lin Qianguo, et al. 2015. High-resolution temperature and precipitation projections over Ontario, Canada: A coupled dynamical-statistical approach [J]. Quart. J. Roy. Meteor. Soc., 141(689): 1137−1146. doi: 10.1002/qj.2421 [31] Wu Dan, Jiang Zhihong, Ma Tingting. 2016. Projection of summer precipitation over the Yangtze–Huaihe River basin using multimodel statistical downscaling based on canonical correlation analysis [J]. J. Meteor. Res., 30(6): 867−880. doi: 10.1007/s13351-016-6030-1 [32] Wu Jia, Gao Xuejie. 2020. Present day bias and future change signal of temperature over China in a series of multi-GCM driven RCM simulations [J]. Climate Dyn., 54(1): 1113−1130. doi: 10.1007/s00382-019-05047-x [33] Wu Jia, Han Zhenyu, Li Rouke, et al. 2021. Changes of extreme climate events and related risk exposures in Huang–Huai–Hai river basin under 1.5–2°C global warming targets based on high resolution combined dynamical and statistical downscaling dataset [J]. Int. J. Climatol., 41(2): 1383−1401. doi: 10.1002/joc.6820 [34] 吴佳, 周波涛, 徐影. 2015. 中国平均降水和极端降水对气候变暖的响应: CMIP5模式模拟评估和预估 [J]. 地球物理学报, 58(9): 3048−3060. doi: 10.6038/cjg20150903Wu Jia, Zhou Botao, Xu Ying. 2015. Response of precipitation and its extremes over China to warming: CMIP5 simulation and projection [J]. Chinese Journal of Geophysics (in Chinese), 58(9): 3048−3060. doi: 10.6038/cjg20150903 [35] Wu Yanjuan, Wu Shuangye, Wen Jiahong, et al. 2016. Future changes in mean and extreme monsoon precipitation in the middle and lower Yangtze River basin, China, in the CMIP5 models [J]. J. Hydrometeorol., 17(11): 2785−2797. doi: 10.1175/JHM-D-16-0033.1 [36] Wu Zhiyong, Lu Guihua, Liu Zhiyu, et al. 2013. Trends of extreme flood events in the Pearl River basin during 1951-2010 [J]. Adv. Climate Change Res., 4(2): 110−116. doi: 10.3724/SP.J.1248.2013.110 [37] Xu Ying, Wu Jie, Shi Ying, et al. 2015. Change in extreme climate events over China based on CMIP5 [J]. Atmos. Oceanic Sci. Lett., 8(4): 185−192. doi: 10.1080/16742834.2015.11447258 [38] Xu Ying, Xu Chonghai, Gao Xuejie, et al. 2009. Projected changes in temperature and precipitation extremes over the Yangtze River basin of China in the 21st century [J]. Quat. Int. , 208(1–2): 44–52. doi: 10.1016/j.quaint.2008.12.020 [39] Yu Entao, Sun Jianqi, Chen Huopo, et al. 2015. Evaluation of a high-resolution historical simulation over China: Climatology and extremes [J]. Climate Dyn., 45(7): 2013−2031. doi: 10.1007/s00382-014-2452-6 [40] Zhan Mingjin, Zhai Jianqing, Sun Hemin, et al. 2019. Observed exposure of population and gross domestic product to extreme precipitation events in the Poyang Lake Basin, China [J]. Atmosphere, 10(12): 817. doi: 10.3390/atmos10120817 [41] 国家统计局. 2021. 中国统计年鉴2021[M]. 北京: 中国统计出版社, 945pp. [42] Zhou Botao, Wen Qiuzihan, Xu Ying, et al. 2014. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles [J]. J. Climate, 27(17): 6591−6611. doi: 10.1175/JCLI-D-13-00761.1 [43] Zhou Xiong, Huang Guohe, Wang Xiuquan, et al. 2018. A coupled dynamical-copula downscaling approach for temperature projections over the Canadian Prairies [J]. Climate Dyn., 51(7): 2413−2431. doi: 10.1007/s00382-017-4020-3 [44] Zhu Xian, Lee S Y, Wen Xiaohang, et al. 2021. Extreme climate changes over three major river basins in China as seen in CMIP5 and CMIP6 [J]. Climate Dyn., 57(3): 1187−1205. doi: 10.1007/s00382-021-05767-z [45] Zou Liwei, Zhou Tianjun. 2013. Near future (2016-40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM [J]. Adv. Atmos. Sci., 30(3): 806−818. doi: 10.1007/s00376-013-2209-x -